Page last updated: 2024-09-05

sorafenib and pyrazolanthrone

sorafenib has been researched along with pyrazolanthrone in 11 studies

Compound Research Comparison

Studies
(sorafenib)
Trials
(sorafenib)
Recent Studies (post-2010)
(sorafenib)
Studies
(pyrazolanthrone)
Trials
(pyrazolanthrone)
Recent Studies (post-2010) (pyrazolanthrone)
6,5207305,2511,4842765

Protein Interaction Comparison

ProteinTaxonomysorafenib (IC50)pyrazolanthrone (IC50)
Chain A, Mitogen-activated protein kinase 10Homo sapiens (human)0.15
Chain A, Mitogen-activated protein kinase 10Homo sapiens (human)0.15
Chain A, Mitogen-activated protein kinase 10Homo sapiens (human)0.15
TPA: protein transporter TIM10Saccharomyces cerevisiae S288C20.2
TPA: protein transporter TIM23Saccharomyces cerevisiae S288C6.31
Serine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)0.72
Interferon-induced, double-stranded RNA-activated protein kinaseHomo sapiens (human)8
Dual specificity protein kinase TTKHomo sapiens (human)0.8987
Mitogen-activated protein kinase 8Homo sapiens (human)0.921
Mitogen-activated protein kinase 9Homo sapiens (human)1.0111
Tyrosine-protein kinase JAK3Homo sapiens (human)0.957
Mitogen-activated protein kinase 10Homo sapiens (human)1.4193
Mitogen-activated protein kinase 14Homo sapiens (human)0.15

Research

Studies (11)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's2 (18.18)29.6817
2010's5 (45.45)24.3611
2020's4 (36.36)2.80

Authors

AuthorsStudies
Atteridge, CE; Azimioara, MD; Benedetti, MG; Biggs, WH; Carter, TA; Ciceri, P; Edeen, PT; Fabian, MA; Floyd, M; Ford, JM; Galvin, M; Gerlach, JL; Grotzfeld, RM; Herrgard, S; Insko, DE; Insko, MA; Lai, AG; Lélias, JM; Lockhart, DJ; Mehta, SA; Milanov, ZV; Patel, HK; Treiber, DK; Velasco, AM; Wodicka, LM; Zarrinkar, PP1
Alessi, DR; Arthur, JS; Bain, J; Cohen, P; Elliott, M; Hastie, CJ; Klevernic, I; McLauchlan, H; Plater, L; Shpiro, N1
Hajduk, PJ; Johnson, EF; Kifle, L; Merta, PJ; Metz, JT; Soni, NB1
Caballero, E; García-Cárceles, J; Gil, C; Martínez, A1
Abu Rabah, RR; Al Shamma, SA; Al-Tel, TH; Anbar, HS; El-Gamal, MI; Elgendy, SM; Omar, HA; Sebastian, A; Shehata, MK; Sultan, S; Tarazi, H; Vunnam, S; Zaraei, SO1
Chen, KF; Cheng, AL; Fan, HH; Feng, WC; Hsu, C; Lin, LI; Ou, DL; Shen, YC; Wang, CT; Yeh, PY; Yu, SL1
Doudican, NA; Orlow, SJ; Quay, E; Zhang, S1
Gao, C; Herr, I; Hoffmann, K; Lin, S; Petrulionis, M; Schemmer, P1
Haga, Y; Kanda, T; Nakamoto, S; Nakamura, M; Sasaki, R; Takahashi, K; Wu, S; Yokosuka, O1
Christie, CF; Dang, Y; DeHart, DN; Fang, D; Gooz, MB; Heslop, KA; Hunt, EG; Lemasters, JJ; Maldonado, EN; Morris, ME; Rovini, A1
Chen, A; Chen, L; Chen, S; Dai, X; He, F; Huang, C; Jiang, Y; Li, S; Li, T; Lian, J; Sun, L; Xiang, L; Xiao, H; Yan, X; Yang, M; Zhang, Y1

Reviews

1 review(s) available for sorafenib and pyrazolanthrone

ArticleYear
Kinase Inhibitors as Underexplored Antiviral Agents.
    Journal of medicinal chemistry, 2022, 01-27, Volume: 65, Issue:2

    Topics: Animals; Antiviral Agents; Drug Repositioning; Humans; Protein Kinase Inhibitors; Virus Diseases; Viruses

2022

Other Studies

10 other study(ies) available for sorafenib and pyrazolanthrone

ArticleYear
A small molecule-kinase interaction map for clinical kinase inhibitors.
    Nature biotechnology, 2005, Volume: 23, Issue:3

    Topics: Benzamides; Drug Design; Escherichia coli; Escherichia coli Proteins; Imatinib Mesylate; Microchemistry; Pharmaceutical Preparations; Piperazines; Protein Binding; Protein Interaction Mapping; Protein Kinase Inhibitors; Pyrimidines

2005
The selectivity of protein kinase inhibitors: a further update.
    The Biochemical journal, 2007, Dec-15, Volume: 408, Issue:3

    Topics: Amino Acid Sequence; Animals; Cell Line; Drug Design; Enzyme Activation; Humans; Mitogen-Activated Protein Kinases; Phosphorylation; Protein Kinase Inhibitors; Recombinant Proteins; Spodoptera

2007
Navigating the kinome.
    Nature chemical biology, 2011, Volume: 7, Issue:4

    Topics: Drug Design; Pharmacogenetics; Protein Kinases; Proteome; Systems Biology

2011
Design, synthesis, and biological evaluation of a new series of pyrazole derivatives: Discovery of potent and selective JNK3 kinase inhibitors.
    Bioorganic & medicinal chemistry, 2022, 09-01, Volume: 69

    Topics: Antineoplastic Agents; Cell Line, Tumor; Cell Proliferation; Drug Design; Drug Screening Assays, Antitumor; Humans; Liver Neoplasms; Molecular Structure; Protein Kinase Inhibitors; Pyrazoles; Structure-Activity Relationship

2022
Induction of DNA damage-inducible gene GADD45beta contributes to sorafenib-induced apoptosis in hepatocellular carcinoma cells.
    Cancer research, 2010, Nov-15, Volume: 70, Issue:22

    Topics: Animals; Anthracenes; Antigens, Differentiation; Antineoplastic Agents; Apoptosis; Benzenesulfonates; Binding Sites; Blotting, Western; Carcinoma, Hepatocellular; Cell Line, Tumor; Cell Survival; Gene Expression Regulation, Neoplastic; Hep G2 Cells; Humans; JNK Mitogen-Activated Protein Kinases; Male; Mice; Mice, Inbred BALB C; Mice, Nude; Niacinamide; Phenylurea Compounds; Promoter Regions, Genetic; Pyridines; Reverse Transcriptase Polymerase Chain Reaction; RNA Interference; Sorafenib; Sp1 Transcription Factor; Transcription Factor AP-1; Transplantation, Heterologous

2010
Fluvastatin enhances sorafenib cytotoxicity in melanoma cells via modulation of AKT and JNK signaling pathways.
    Anticancer research, 2011, Volume: 31, Issue:10

    Topics: Anthracenes; Benzenesulfonates; Cell Death; Cell Line, Tumor; Cell Proliferation; Chromones; Drug Screening Assays, Antitumor; Drug Synergism; Enzyme Activation; Fatty Acids, Monounsaturated; Fluvastatin; Humans; Indoles; JNK Mitogen-Activated Protein Kinases; Melanoma; Morpholines; Niacinamide; Phenylurea Compounds; Poly(ADP-ribose) Polymerases; Proto-Oncogene Proteins c-akt; Pyridines; Signal Transduction; Sorafenib

2011
Melatonin promotes sorafenib-induced apoptosis through synergistic activation of JNK/c-jun pathway in human hepatocellular carcinoma.
    Journal of pineal research, 2017, Volume: 62, Issue:3

    Topics: Anthracenes; Carcinoma, Hepatocellular; Caspase 3; Cell Line, Tumor; Dose-Response Relationship, Drug; Humans; JNK Mitogen-Activated Protein Kinases; Liver Neoplasms; MAP Kinase Kinase 4; Melatonin; Neoplasm Proteins; Niacinamide; Phenylurea Compounds; Signal Transduction; Sorafenib

2017
Overexpression of c-Jun contributes to sorafenib resistance in human hepatoma cell lines.
    PloS one, 2017, Volume: 12, Issue:3

    Topics: Anthracenes; Antineoplastic Agents; Apoptosis; Carcinoma, Hepatocellular; Caspase 3; Caspase 7; Cell Line, Tumor; Drug Resistance, Neoplasm; Hep G2 Cells; Humans; JNK Mitogen-Activated Protein Kinases; Liver Neoplasms; Niacinamide; Osteopontin; Phenylurea Compounds; Phosphorylation; Proto-Oncogene Mas; RNA Interference; RNA, Small Interfering; Sorafenib

2017
JNK activation and translocation to mitochondria mediates mitochondrial dysfunction and cell death induced by VDAC opening and sorafenib in hepatocarcinoma cells.
    Biochemical pharmacology, 2020, Volume: 171

    Topics: Anthracenes; Antineoplastic Agents; Carcinoma, Hepatocellular; Cell Death; Cell Line, Tumor; Enzyme Activation; Hep G2 Cells; Humans; JNK Mitogen-Activated Protein Kinases; Liver Neoplasms; Membrane Potential, Mitochondrial; Mitochondria; Oxidative Stress; Protein Transport; Reactive Oxygen Species; Sorafenib; Voltage-Dependent Anion Channels

2020
Dichloroacetate enhances the anti-tumor effect of sorafenib via modulating the ROS-JNK-Mcl-1 pathway in liver cancer cells.
    Experimental cell research, 2021, 09-01, Volume: 406, Issue:1

    Topics: Acetylcysteine; Animals; Anthracenes; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Cell Line, Tumor; Dichloroacetic Acid; Drug Resistance, Neoplasm; Drug Synergism; Gene Expression Regulation, Neoplastic; Hepatocytes; Humans; Liver Neoplasms; Male; MAP Kinase Kinase 4; Mice, Nude; Myeloid Cell Leukemia Sequence 1 Protein; Phosphorylation; Proto-Oncogene Proteins c-bcl-2; Reactive Oxygen Species; Signal Transduction; Sorafenib; Tumor Burden; Xenograft Model Antitumor Assays

2021