sorafenib has been researched along with pyrazolanthrone in 11 studies
Studies (sorafenib) | Trials (sorafenib) | Recent Studies (post-2010) (sorafenib) | Studies (pyrazolanthrone) | Trials (pyrazolanthrone) | Recent Studies (post-2010) (pyrazolanthrone) |
---|---|---|---|---|---|
6,520 | 730 | 5,251 | 1,484 | 2 | 765 |
Protein | Taxonomy | sorafenib (IC50) | pyrazolanthrone (IC50) |
---|---|---|---|
Chain A, Mitogen-activated protein kinase 10 | Homo sapiens (human) | 0.15 | |
Chain A, Mitogen-activated protein kinase 10 | Homo sapiens (human) | 0.15 | |
Chain A, Mitogen-activated protein kinase 10 | Homo sapiens (human) | 0.15 | |
TPA: protein transporter TIM10 | Saccharomyces cerevisiae S288C | 20.2 | |
TPA: protein transporter TIM23 | Saccharomyces cerevisiae S288C | 6.31 | |
Serine/threonine-protein kinase/endoribonuclease IRE1 | Homo sapiens (human) | 0.72 | |
Interferon-induced, double-stranded RNA-activated protein kinase | Homo sapiens (human) | 8 | |
Dual specificity protein kinase TTK | Homo sapiens (human) | 0.8987 | |
Mitogen-activated protein kinase 8 | Homo sapiens (human) | 0.921 | |
Mitogen-activated protein kinase 9 | Homo sapiens (human) | 1.0111 | |
Tyrosine-protein kinase JAK3 | Homo sapiens (human) | 0.957 | |
Mitogen-activated protein kinase 10 | Homo sapiens (human) | 1.4193 | |
Mitogen-activated protein kinase 14 | Homo sapiens (human) | 0.15 |
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 2 (18.18) | 29.6817 |
2010's | 5 (45.45) | 24.3611 |
2020's | 4 (36.36) | 2.80 |
Authors | Studies |
---|---|
Atteridge, CE; Azimioara, MD; Benedetti, MG; Biggs, WH; Carter, TA; Ciceri, P; Edeen, PT; Fabian, MA; Floyd, M; Ford, JM; Galvin, M; Gerlach, JL; Grotzfeld, RM; Herrgard, S; Insko, DE; Insko, MA; Lai, AG; Lélias, JM; Lockhart, DJ; Mehta, SA; Milanov, ZV; Patel, HK; Treiber, DK; Velasco, AM; Wodicka, LM; Zarrinkar, PP | 1 |
Alessi, DR; Arthur, JS; Bain, J; Cohen, P; Elliott, M; Hastie, CJ; Klevernic, I; McLauchlan, H; Plater, L; Shpiro, N | 1 |
Hajduk, PJ; Johnson, EF; Kifle, L; Merta, PJ; Metz, JT; Soni, NB | 1 |
Caballero, E; García-Cárceles, J; Gil, C; Martínez, A | 1 |
Abu Rabah, RR; Al Shamma, SA; Al-Tel, TH; Anbar, HS; El-Gamal, MI; Elgendy, SM; Omar, HA; Sebastian, A; Shehata, MK; Sultan, S; Tarazi, H; Vunnam, S; Zaraei, SO | 1 |
Chen, KF; Cheng, AL; Fan, HH; Feng, WC; Hsu, C; Lin, LI; Ou, DL; Shen, YC; Wang, CT; Yeh, PY; Yu, SL | 1 |
Doudican, NA; Orlow, SJ; Quay, E; Zhang, S | 1 |
Gao, C; Herr, I; Hoffmann, K; Lin, S; Petrulionis, M; Schemmer, P | 1 |
Haga, Y; Kanda, T; Nakamoto, S; Nakamura, M; Sasaki, R; Takahashi, K; Wu, S; Yokosuka, O | 1 |
Christie, CF; Dang, Y; DeHart, DN; Fang, D; Gooz, MB; Heslop, KA; Hunt, EG; Lemasters, JJ; Maldonado, EN; Morris, ME; Rovini, A | 1 |
Chen, A; Chen, L; Chen, S; Dai, X; He, F; Huang, C; Jiang, Y; Li, S; Li, T; Lian, J; Sun, L; Xiang, L; Xiao, H; Yan, X; Yang, M; Zhang, Y | 1 |
1 review(s) available for sorafenib and pyrazolanthrone
Article | Year |
---|---|
Kinase Inhibitors as Underexplored Antiviral Agents.
Topics: Animals; Antiviral Agents; Drug Repositioning; Humans; Protein Kinase Inhibitors; Virus Diseases; Viruses | 2022 |
10 other study(ies) available for sorafenib and pyrazolanthrone
Article | Year |
---|---|
A small molecule-kinase interaction map for clinical kinase inhibitors.
Topics: Benzamides; Drug Design; Escherichia coli; Escherichia coli Proteins; Imatinib Mesylate; Microchemistry; Pharmaceutical Preparations; Piperazines; Protein Binding; Protein Interaction Mapping; Protein Kinase Inhibitors; Pyrimidines | 2005 |
The selectivity of protein kinase inhibitors: a further update.
Topics: Amino Acid Sequence; Animals; Cell Line; Drug Design; Enzyme Activation; Humans; Mitogen-Activated Protein Kinases; Phosphorylation; Protein Kinase Inhibitors; Recombinant Proteins; Spodoptera | 2007 |
Navigating the kinome.
Topics: Drug Design; Pharmacogenetics; Protein Kinases; Proteome; Systems Biology | 2011 |
Design, synthesis, and biological evaluation of a new series of pyrazole derivatives: Discovery of potent and selective JNK3 kinase inhibitors.
Topics: Antineoplastic Agents; Cell Line, Tumor; Cell Proliferation; Drug Design; Drug Screening Assays, Antitumor; Humans; Liver Neoplasms; Molecular Structure; Protein Kinase Inhibitors; Pyrazoles; Structure-Activity Relationship | 2022 |
Induction of DNA damage-inducible gene GADD45beta contributes to sorafenib-induced apoptosis in hepatocellular carcinoma cells.
Topics: Animals; Anthracenes; Antigens, Differentiation; Antineoplastic Agents; Apoptosis; Benzenesulfonates; Binding Sites; Blotting, Western; Carcinoma, Hepatocellular; Cell Line, Tumor; Cell Survival; Gene Expression Regulation, Neoplastic; Hep G2 Cells; Humans; JNK Mitogen-Activated Protein Kinases; Male; Mice; Mice, Inbred BALB C; Mice, Nude; Niacinamide; Phenylurea Compounds; Promoter Regions, Genetic; Pyridines; Reverse Transcriptase Polymerase Chain Reaction; RNA Interference; Sorafenib; Sp1 Transcription Factor; Transcription Factor AP-1; Transplantation, Heterologous | 2010 |
Fluvastatin enhances sorafenib cytotoxicity in melanoma cells via modulation of AKT and JNK signaling pathways.
Topics: Anthracenes; Benzenesulfonates; Cell Death; Cell Line, Tumor; Cell Proliferation; Chromones; Drug Screening Assays, Antitumor; Drug Synergism; Enzyme Activation; Fatty Acids, Monounsaturated; Fluvastatin; Humans; Indoles; JNK Mitogen-Activated Protein Kinases; Melanoma; Morpholines; Niacinamide; Phenylurea Compounds; Poly(ADP-ribose) Polymerases; Proto-Oncogene Proteins c-akt; Pyridines; Signal Transduction; Sorafenib | 2011 |
Melatonin promotes sorafenib-induced apoptosis through synergistic activation of JNK/c-jun pathway in human hepatocellular carcinoma.
Topics: Anthracenes; Carcinoma, Hepatocellular; Caspase 3; Cell Line, Tumor; Dose-Response Relationship, Drug; Humans; JNK Mitogen-Activated Protein Kinases; Liver Neoplasms; MAP Kinase Kinase 4; Melatonin; Neoplasm Proteins; Niacinamide; Phenylurea Compounds; Signal Transduction; Sorafenib | 2017 |
Overexpression of c-Jun contributes to sorafenib resistance in human hepatoma cell lines.
Topics: Anthracenes; Antineoplastic Agents; Apoptosis; Carcinoma, Hepatocellular; Caspase 3; Caspase 7; Cell Line, Tumor; Drug Resistance, Neoplasm; Hep G2 Cells; Humans; JNK Mitogen-Activated Protein Kinases; Liver Neoplasms; Niacinamide; Osteopontin; Phenylurea Compounds; Phosphorylation; Proto-Oncogene Mas; RNA Interference; RNA, Small Interfering; Sorafenib | 2017 |
JNK activation and translocation to mitochondria mediates mitochondrial dysfunction and cell death induced by VDAC opening and sorafenib in hepatocarcinoma cells.
Topics: Anthracenes; Antineoplastic Agents; Carcinoma, Hepatocellular; Cell Death; Cell Line, Tumor; Enzyme Activation; Hep G2 Cells; Humans; JNK Mitogen-Activated Protein Kinases; Liver Neoplasms; Membrane Potential, Mitochondrial; Mitochondria; Oxidative Stress; Protein Transport; Reactive Oxygen Species; Sorafenib; Voltage-Dependent Anion Channels | 2020 |
Dichloroacetate enhances the anti-tumor effect of sorafenib via modulating the ROS-JNK-Mcl-1 pathway in liver cancer cells.
Topics: Acetylcysteine; Animals; Anthracenes; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Cell Line, Tumor; Dichloroacetic Acid; Drug Resistance, Neoplasm; Drug Synergism; Gene Expression Regulation, Neoplastic; Hepatocytes; Humans; Liver Neoplasms; Male; MAP Kinase Kinase 4; Mice, Nude; Myeloid Cell Leukemia Sequence 1 Protein; Phosphorylation; Proto-Oncogene Proteins c-bcl-2; Reactive Oxygen Species; Signal Transduction; Sorafenib; Tumor Burden; Xenograft Model Antitumor Assays | 2021 |