sorafenib has been researched along with lapatinib in 52 studies
Studies (sorafenib) | Trials (sorafenib) | Recent Studies (post-2010) (sorafenib) | Studies (lapatinib) | Trials (lapatinib) | Recent Studies (post-2010) (lapatinib) |
---|---|---|---|---|---|
6,520 | 730 | 5,251 | 1,919 | 305 | 1,442 |
Protein | Taxonomy | sorafenib (IC50) | lapatinib (IC50) |
---|---|---|---|
Bile salt export pump | Homo sapiens (human) | 7.375 | |
Epidermal growth factor receptor | Homo sapiens (human) | 0.0827 | |
Receptor tyrosine-protein kinase erbB-2 | Homo sapiens (human) | 0.0537 | |
Platelet-derived growth factor receptor beta | Homo sapiens (human) | 8.5 | |
D(1A) dopamine receptor | Sus scrofa (pig) | 0.06 | |
Potassium voltage-gated channel subfamily H member 2 | Homo sapiens (human) | 1 | |
Receptor tyrosine-protein kinase erbB-4 | Homo sapiens (human) | 0.1659 | |
Alpha-1A adrenergic receptor | Sus scrofa (pig) | 0.06 | |
Broad substrate specificity ATP-binding cassette transporter ABCG2 | Homo sapiens (human) | 3.2 |
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 11 (21.15) | 29.6817 |
2010's | 33 (63.46) | 24.3611 |
2020's | 8 (15.38) | 2.80 |
Authors | Studies |
---|---|
Atteridge, CE; Azimioara, MD; Benedetti, MG; Biggs, WH; Carter, TA; Ciceri, P; Edeen, PT; Fabian, MA; Floyd, M; Ford, JM; Galvin, M; Gerlach, JL; Grotzfeld, RM; Herrgard, S; Insko, DE; Insko, MA; Lai, AG; Lélias, JM; Lockhart, DJ; Mehta, SA; Milanov, ZV; Patel, HK; Treiber, DK; Velasco, AM; Wodicka, LM; Zarrinkar, PP | 1 |
Atteridge, CE; Campbell, BT; Chan, KW; Ciceri, P; Davis, MI; Edeen, PT; Faraoni, R; Floyd, M; Gallant, P; Herrgard, S; Hunt, JP; Karaman, MW; Lockhart, DJ; Milanov, ZV; Morrison, MJ; Pallares, G; Patel, HK; Pritchard, S; Treiber, DK; Wodicka, LM; Zarrinkar, PP | 1 |
Morphy, R | 1 |
Afshari, CA; Eschenberg, M; Hamadeh, HK; Lee, PH; Lightfoot-Dunn, R; Morgan, RE; Qualls, CW; Ramachandran, B; Trauner, M; van Staden, CJ | 1 |
Hajduk, PJ; Johnson, EF; Kifle, L; Merta, PJ; Metz, JT; Soni, NB | 1 |
Russu, WA; Shallal, HM | 1 |
Ciceri, P; Davis, MI; Herrgard, S; Hocker, M; Hunt, JP; Pallares, G; Treiber, DK; Wodicka, LM; Zarrinkar, PP | 1 |
Cantin, LD; Chen, H; Kenna, JG; Noeske, T; Stahl, S; Walker, CL; Warner, DJ | 1 |
Davis, MI; Khan, J; Li, SQ; Patel, PR; Shen, M; Sun, H; Thomas, CJ | 1 |
Aleo, MD; Bonin, PD; Luo, Y; Potter, DM; Swiss, R; Will, Y | 1 |
Bullock, AN; Canning, P; Choi, S; Cuny, GD; Mohedas, AH; Sanvitale, CE; Wang, Y; Xing, X; Yu, PB | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
Aiche, S; Bassermann, F; Becker, W; Canevari, G; Casale, E; Depaolini, SR; Ehrlich, HC; Felder, ER; Feuchtinger, A; Garz, AK; Gohlke, BO; Götze, K; Greif, PA; Hahne, H; Heinzlmeir, S; Helm, D; Huenges, J; Jeremias, I; Kayser, G; Klaeger, S; Koch, H; Koenig, PA; Kramer, K; Kuster, B; Médard, G; Meng, C; Petzoldt, S; Polzer, H; Preissner, R; Qiao, H; Reinecke, M; Reiter, K; Rueckert, L; Ruland, J; Ruprecht, B; Schlegl, J; Schmidt, T; Schneider, S; Schoof, M; Spiekermann, K; Tõnisson, N; Vick, B; Vooder, T; Walch, A; Wilhelm, M; Wu, Z; Zecha, J; Zolg, DP | 1 |
Guo, Y; He, J; Li, Y; Liu, M; Liu, Y; Xiao, J; Yu, W; Zhang, Q | 1 |
Liu, Y; Xu, Z; Zhao, SJ | 1 |
Abuo-Rahma, GEA; Badr, M; Bass, AKA; El-Zoghbi, MS; Mohamed, MFA; Nageeb, EM | 1 |
Abdel-Maksoud, MS; Alach, NN; Anbar, HS; El-Gamal, MI; El-Gamal, R; Oh, CH; Sbenati, RM; Shehata, MK; Tarazi, H; Zaraei, SO | 1 |
Delabio, LC; Dutra, JP; Hembecker, M; Kita, DH; Moure, VR; Pereira, GDS; Scheiffer, G; Valdameri, G; Zattoni, IF | 1 |
Hampton, T | 1 |
Force, T; Krause, DS; Van Etten, RA | 1 |
Giordano, S; Petrelli, A | 1 |
Heinemann, V; Stemmler, HJ | 1 |
Becker, M; Börgermann, C; Rose, A; Rübben, H; Vom Dorp, F | 1 |
Agulnik, M; Wang, LX | 1 |
Decosterd, LA; Duchosal, MA; Haouala, A; Leyvraz, S; Montemurro, M; Ris, HB; Rochat, B; Widmer, N; Zaman, K; Zanolari, B | 1 |
Gelderblom, H; Guchelaar, HJ; van Erp, NP | 1 |
Akita, H | 1 |
Amadori, D; Brigliadori, G; Carloni, S; Fabbri, F; Silvestrini, R; Ulivi, P; Zoli, W | 1 |
Berros, JP; Blay, P; Corral, N; Esteban, E; Estrada, E; Fernández, Y; Fonseca, PJ; Fra, J; Izquierdo, M; Lacave, ÁJ; Luque, M; Muriel, C; Pardo, P; Sanmamed, M; Vieitez, JM; Villanueva, N | 1 |
Catalano, O; De Giuli, L; Della Porta, MG; Eleuteri, E; Riccardi, A; Tondini, C; Zambelli, A | 1 |
Aglietta, M; Capellero, S; Cavalloni, G; Gammaitoni, L; Giordano, S; Migliardi, G; Milani, A; Moggio, A; Montemurro, F; Pecchioni, C; Peraldo-Neia, C; Petrelli, A; Sapino, A; Valabrega, G; Zaccarello, G | 1 |
Oberstein, PE; Saif, MW | 1 |
Barrière, J; Janus, N; Launay-Vacher, V; Thariat, J | 1 |
Bertossi, M; De Sanctis, R; De Vincenzo, F; Di Tommaso, L; Fattuzzo, G; Giordano, L; Lorenzi, E; Mancini, L; Masci, G; Perrino, M; Rimassa, L; Roncalli, MG; Rubino, L; Santoro, A; Simonelli, M; Suter, MB; Zucali, PA; Zuradelli, M | 1 |
Andriamanana, I; Duretz, B; Gana, I; Hulin, A | 1 |
Escudero-Ortiz, V; Pérez-Ruixo, JJ; Valenzuela, B | 2 |
Croft, SL; Sanderson, L; Yardley, V | 1 |
Altun, A; Altun, GG; Babacan, N; Bahceci, A; Kacan, SB; Kacan, T; Sarac, B; Seker, MM | 1 |
Dent, P; Grant, S; Hamed, HA; Poklepovic, A; Tavallai, S | 1 |
Alloisio, M; Fatuzzo, G; Lorenzi, E; Rubino, L; Santoro, A; Simonelli, M; Suter, MB; Zucali, PA | 1 |
Chen, YC; Chin, SY; Chou, CL; Jiang, MC; Lee, WR; Liu, KH; Shen, SC; Shih, YH; Tseng, JT | 1 |
Bower, M; Erbacher, I; Fortunak, J; Gotham, D; Hill, A; Levi, J; Martin, M; Meldrum, J; Powderly, WG; Shoman, H | 1 |
Burns, K; Chau, N; Kichenadasse, G; Knights, KM; Mackenzie, PI; McKinnon, RA; Miners, JO; Rowland, A; Tucker, GT | 1 |
Dekker, H; Labots, M; Meijer, GA; Pham, TV; Ruijter, R; Van der Hoeven, JJM; Van der Mijn, JC; Van der Vliet, HJ; Verheul, HMW | 1 |
Hino, H; Hiramoto, M; Kazama, H; Lorenzo, A; Miyazawa, K; Moriya, S; Okuma, T; Ota, K; Takano, N; Yokota, A | 1 |
Boswell, SA; Erickson, AR; Everley, RA; Haigis, MC; Holton, KM; Jacobson, CA; Maliszewski, L; Palmer, AC; Ringel, AE; Ron-Harel, N; Sheehan, RP; Sorger, PK; Wang, H | 1 |
Brors, B; Haibe-Kains, B; Kurilov, R | 1 |
Chang, WT; Feng, YH; Lee, K; Liu, PY; Wu, SN | 1 |
Cai, N; Cheng, K; Liang, H; Wen, J; Xiong, Y; Zhang, W; Zhang, Y; Zhu, J | 1 |
Abbas, SE; Abdelrasheed Allam, H; Farouk, AKBAW; George, RF; Rashwan, E | 1 |
Tan, J; Xu, M; Zhong, Z | 1 |
14 review(s) available for sorafenib and lapatinib
Article | Year |
---|---|
Selectively nonselective kinase inhibition: striking the right balance.
Topics: Animals; Antineoplastic Agents; Drug Design; Drug Discovery; Humans; Protein Binding; Protein Kinase Inhibitors; Structure-Activity Relationship | 2010 |
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
The association between anti-tumor potency and structure-activity of protein-kinases inhibitors based on quinazoline molecular skeleton.
Topics: Animals; Antineoplastic Agents; Cell Proliferation; Humans; Neoplasms; Protein Kinase Inhibitors; Protein Kinases; Quinazolines | 2019 |
1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships.
Topics: Antineoplastic Agents; Humans; Molecular Structure; Neoplasms; Structure-Activity Relationship; Triazoles | 2019 |
Comprehensive review for anticancer hybridized multitargeting HDAC inhibitors.
Topics: Androgen Antagonists; Animals; Antineoplastic Agents; Benzimidazoles; Cyclic Nucleotide Phosphodiesterases, Type 5; Daunorubicin; Doxorubicin; fms-Like Tyrosine Kinase 3; Histone Deacetylase Inhibitors; Humans; Hydroxamic Acids; Molecular Targeted Therapy; Morpholines; Nicotinamide Phosphoribosyltransferase; Nitric Oxide; Pyrimidines; Quinazolines; Structure-Activity Relationship; Transcription Factors | 2021 |
Targeting breast cancer resistance protein (BCRP/ABCG2): Functional inhibitors and expression modulators.
Topics: Antineoplastic Agents; ATP Binding Cassette Transporter, Subfamily G, Member 2; Breast Neoplasms; Drug Resistance, Multiple; Drug Resistance, Neoplasm; Female; Humans; Neoplasm Proteins; Neoplastic Stem Cells | 2022 |
Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition.
Topics: Adaptor Proteins, Signal Transducing; Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Benzenesulfonates; Drug Delivery Systems; Enzyme Inhibitors; Heart; Heart Diseases; Humans; Indoles; Lapatinib; Models, Biological; Neoplasms; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Proto-Oncogene Proteins c-abl; Pyridines; Pyrroles; Quinazolines; Sorafenib; Sunitinib; Trastuzumab | 2007 |
From single- to multi-target drugs in cancer therapy: when aspecificity becomes an advantage.
Topics: Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Benzamides; Benzenesulfonates; Bevacizumab; Cetuximab; Clinical Trials as Topic; Enzyme Inhibitors; Erlotinib Hydrochloride; Gefitinib; Humans; Imatinib Mesylate; Indoles; Lapatinib; Neoplasms; Neovascularization, Pathologic; Niacinamide; Phenylurea Compounds; Piperazines; Piperidines; Protein-Tyrosine Kinases; Pyridines; Pyrimidines; Pyrroles; Quinazolines; Receptor Protein-Tyrosine Kinases; Sorafenib; Sunitinib; Trastuzumab | 2008 |
[Oncology 2008].
Topics: Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Benzenesulfonates; Bevacizumab; Cetuximab; Combined Modality Therapy; Disease Progression; Epothilones; Humans; Lapatinib; Neoplasm Recurrence, Local; Neoplasm Staging; Neoplasms; Niacinamide; Panitumumab; Phenylurea Compounds; Prognosis; Pyridines; Quinazolines; Randomized Controlled Trials as Topic; Sorafenib; Survival Rate | 2008 |
Clinical pharmacokinetics of tyrosine kinase inhibitors.
Topics: Administration, Oral; Antineoplastic Agents; Benzamides; Benzenesulfonates; Biological Availability; Cytochrome P-450 Enzyme System; Dasatinib; Drug Interactions; Erlotinib Hydrochloride; Gefitinib; Humans; Imatinib Mesylate; Indoles; Intestinal Absorption; Lapatinib; Niacinamide; Phenylurea Compounds; Piperazines; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Pyridines; Pyrimidines; Pyrroles; Quinazolines; Sorafenib; Sunitinib; Thiazoles; Tissue Distribution | 2009 |
[Molecular targeted drugs in the developmental stage: 2) Various molecular targets and therapeutic agents under investigation].
Topics: Antineoplastic Agents; Benzenesulfonates; Drug Delivery Systems; Drug Resistance; ErbB Receptors; Humans; Lapatinib; Niacinamide; Phenylurea Compounds; Pyridines; Quinazolines; Sorafenib; Vascular Endothelial Growth Factors | 2009 |
Predicting and preventing cardiotoxicity in the era of breast cancer targeted therapies. Novel molecular tools for clinical issues.
Topics: Angiogenesis Inhibitors; Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Benzenesulfonates; Bevacizumab; Biomarkers; Breast Neoplasms; Cardiotoxins; Cardiovascular Diseases; Female; Heart Failure; Humans; Indoles; Lapatinib; Molecular Targeted Therapy; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Pyridines; Pyrroles; Quinazolines; Risk Assessment; Sorafenib; Sunitinib; Trastuzumab | 2011 |
Targeted therapy for thymic epithelial tumors: a new horizon? Review of the literature and two cases reports.
Topics: Aged; Antineoplastic Combined Chemotherapy Protocols; ErbB Receptors; Female; Histone Deacetylase Inhibitors; Humans; Lapatinib; Molecular Targeted Therapy; Neoplasms, Glandular and Epithelial; Niacinamide; Phenylurea Compounds; Pleural Neoplasms; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-kit; Quinazolines; Receptor, IGF Type 1; Receptors, Somatomedin; Sorafenib; Thymus Neoplasms; TOR Serine-Threonine Kinases; Young Adult | 2015 |
The Molecular Mechanisms of Regulating Oxidative Stress-Induced Ferroptosis and Therapeutic Strategy in Tumors.
Topics: Acetaminophen; Antineoplastic Agents; Antioxidants; Apoptosis; Artemisinins; Auranofin; Cell Death; Cisplatin; Epigenesis, Genetic; Fatty Acids; Ferroptosis; Haloperidol; Humans; Indoles; Iron; Lapatinib; Mevalonic Acid; NADP; Neoplasms; Oxidation-Reduction; Oxidative Stress; Oxygen; Quinolines; Reactive Oxygen Species; Sorafenib; Spiro Compounds; Sulfasalazine; Trigonella | 2020 |
1 trial(s) available for sorafenib and lapatinib
Article | Year |
---|---|
Phase I pharmacokinetic and pharmacodynamic study of lapatinib in combination with sorafenib in patients with advanced refractory solid tumors.
Topics: Adult; Aged; Antineoplastic Combined Chemotherapy Protocols; Disease Progression; Dose-Response Relationship, Drug; Drug Hypersensitivity; Drug Resistance, Neoplasm; Female; Humans; Lapatinib; Male; Maximum Tolerated Dose; Middle Aged; Neoplasms; Niacinamide; Phenylurea Compounds; Quinazolines; Sorafenib | 2013 |
37 other study(ies) available for sorafenib and lapatinib
Article | Year |
---|---|
A small molecule-kinase interaction map for clinical kinase inhibitors.
Topics: Benzamides; Drug Design; Escherichia coli; Escherichia coli Proteins; Imatinib Mesylate; Microchemistry; Pharmaceutical Preparations; Piperazines; Protein Binding; Protein Interaction Mapping; Protein Kinase Inhibitors; Pyrimidines | 2005 |
A quantitative analysis of kinase inhibitor selectivity.
Topics: Binding Sites; Enzyme Activation; Humans; Phosphotransferases; Protein Binding; Protein Interaction Mapping; Protein Kinase Inhibitors; Proteome; Quantitative Structure-Activity Relationship | 2008 |
Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Assay; Biological Transport; Cell Line; Cell Membrane; Chemical and Drug Induced Liver Injury; Cytoplasmic Vesicles; Drug Evaluation, Preclinical; Humans; Liver; Rats; Reproducibility of Results; Spodoptera; Transfection; Xenobiotics | 2010 |
Navigating the kinome.
Topics: Drug Design; Pharmacogenetics; Protein Kinases; Proteome; Systems Biology | 2011 |
Discovery, synthesis, and investigation of the antitumor activity of novel piperazinylpyrimidine derivatives.
Topics: Antineoplastic Agents; Cell Line, Tumor; Cell Proliferation; Dose-Response Relationship, Drug; Drug Discovery; Drug Screening Assays, Antitumor; Humans; Models, Molecular; Molecular Structure; Piperazines; Protein Kinase Inhibitors; Protein Kinases; Pyrimidines; Stereoisomerism; Structure-Activity Relationship | 2011 |
Comprehensive analysis of kinase inhibitor selectivity.
Topics: Catalysis; Drug Design; Enzyme Stability; High-Throughput Screening Assays; Humans; Protein Binding; Protein Kinase Inhibitors; Protein Kinases; Proteomics; Signal Transduction; Substrate Specificity | 2011 |
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Humans; Quantitative Structure-Activity Relationship | 2012 |
Identification of potent Yes1 kinase inhibitors using a library screening approach.
Topics: Binding Sites; Cell Line; Cell Survival; Drug Design; Humans; Hydrogen Bonding; Molecular Docking Simulation; Protein Kinase Inhibitors; Protein Structure, Tertiary; Proto-Oncogene Proteins c-yes; Small Molecule Libraries; Structure-Activity Relationship | 2013 |
Human drug-induced liver injury severity is highly associated with dual inhibition of liver mitochondrial function and bile salt export pump.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Chemical and Drug Induced Liver Injury; Humans; Male; Mitochondria, Liver; Rats; Rats, Sprague-Dawley; Severity of Illness Index | 2014 |
Structure-activity relationship of 3,5-diaryl-2-aminopyridine ALK2 inhibitors reveals unaltered binding affinity for fibrodysplasia ossificans progressiva causing mutants.
Topics: Activin Receptors, Type I; Aminopyridines; Humans; Mutation; Myositis Ossificans; Phenols; Protein Kinase Inhibitors; Structure-Activity Relationship | 2014 |
The target landscape of clinical kinase drugs.
Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; Cytokines; Drug Discovery; fms-Like Tyrosine Kinase 3; Humans; Leukemia, Myeloid, Acute; Lung Neoplasms; Mice; Molecular Targeted Therapy; Protein Kinase Inhibitors; Protein Serine-Threonine Kinases; Proteomics; Xenograft Model Antitumor Assays | 2017 |
Discovery of first-in-class imidazothiazole-based potent and selective ErbB4 (HER4) kinase inhibitors.
Topics: Binding Sites; Catalytic Domain; Cell Line, Tumor; Cell Proliferation; Drug Design; Drug Screening Assays, Antitumor; Humans; Imidazoles; Molecular Docking Simulation; Protein Kinase Inhibitors; Proto-Oncogene Proteins B-raf; Receptor, ErbB-4; Structure-Activity Relationship; Thiazoles | 2021 |
Trials probe new agents for kidney cancer.
Topics: Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Benzenesulfonates; Bevacizumab; Carcinoma, Renal Cell; Clinical Trials as Topic; Humans; Indoles; Kidney Neoplasms; Lapatinib; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Pyridines; Pyrroles; Quinazolines; Sirolimus; Sorafenib; Sunitinib | 2006 |
[Targeted therapy for metastatic bladder cancer].
Topics: Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Benzenesulfonates; Bevacizumab; Carcinoma, Transitional Cell; Disease Progression; Drug Delivery Systems; Gefitinib; Humans; Lapatinib; Niacinamide; Phenylurea Compounds; Pyridines; Quinazolines; Receptor, ErbB-2; Receptors, Growth Factor; Sorafenib; Survival Rate; Trastuzumab; Urinary Bladder Neoplasms | 2008 |
Promising newer molecular-targeted therapies in head and neck cancer.
Topics: Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Benzenesulfonates; Cetuximab; Clinical Trials as Topic; ErbB Receptors; Erlotinib Hydrochloride; Gefitinib; Head and Neck Neoplasms; Humans; Lapatinib; Models, Biological; Niacinamide; Panitumumab; Phenylurea Compounds; Protein Kinase Inhibitors; Pyridines; Quinazolines; Receptors, Vascular Endothelial Growth Factor; Sorafenib | 2008 |
Therapeutic Drug Monitoring of the new targeted anticancer agents imatinib, nilotinib, dasatinib, sunitinib, sorafenib and lapatinib by LC tandem mass spectrometry.
Topics: Antineoplastic Agents; Benzamides; Benzenesulfonates; Chromatography, Liquid; Dasatinib; Drug Monitoring; Humans; Imatinib Mesylate; Indoles; Lapatinib; Neoplasms; Niacinamide; Phenylurea Compounds; Piperazines; Pyridines; Pyrimidines; Pyrroles; Quinazolines; Sorafenib; Sunitinib; Tandem Mass Spectrometry; Thiazoles | 2009 |
Tyrosine kinase inhibitors gefitinib, lapatinib and sorafenib induce rapid functional alterations in breast cancer cells.
Topics: Antineoplastic Agents; Apoptosis; Base Sequence; Benzenesulfonates; Breast Neoplasms; Calcium; Cell Division; Cell Line, Tumor; Cytosol; DNA Primers; Endoplasmic Reticulum; Flow Cytometry; Gefitinib; Humans; Lapatinib; Membrane Potentials; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Pyridines; Quinazolines; Reverse Transcriptase Polymerase Chain Reaction; Sorafenib | 2010 |
Impact of the incorporation of tyrosine kinase inhibitor agents on the treatment of patients with a diagnosis of advanced renal cell carcinoma: study based on experience at the Hospital Universitario Central de Asturias.
Topics: Adult; Aged; Angiogenesis Inhibitors; Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Benzenesulfonates; Bevacizumab; Carcinoma, Renal Cell; Disease-Free Survival; Drug Therapy, Combination; Female; Humans; Immunologic Factors; Indoles; Interferon-alpha; Interleukin-2; Kaplan-Meier Estimate; Kidney Neoplasms; Lapatinib; Male; Middle Aged; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Pyridines; Pyrroles; Quinazolines; Retrospective Studies; Sorafenib; Sunitinib; Treatment Outcome | 2010 |
HER2-positive breast cancer cells resistant to trastuzumab and lapatinib lose reliance upon HER2 and are sensitive to the multitargeted kinase inhibitor sorafenib.
Topics: Animals; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Benzenesulfonates; Breast Neoplasms; Cell Line, Tumor; Cell Proliferation; Drug Resistance, Neoplasm; Female; Gene Expression Regulation, Neoplastic; Humans; Inhibitor of Apoptosis Proteins; Lapatinib; Mice; Mice, Inbred NOD; Mice, SCID; Mitogen-Activated Protein Kinases; Myeloid Cell Leukemia Sequence 1 Protein; Niacinamide; Oncogene Protein v-akt; Phenylurea Compounds; Phosphatidylinositol 3-Kinases; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-bcl-2; Pyridines; Quinazolines; Receptor, ErbB-2; RNA, Small Interfering; Signal Transduction; Sorafenib; Survivin; Trastuzumab; Tumor Burden; Xenograft Model Antitumor Assays | 2011 |
First-line treatment for advanced pancreatic cancer. Highlights from the "2011 ASCO Gastrointestinal Cancers Symposium". San Francisco, CA, USA. January 20-22, 2011.
Topics: Antineoplastic Combined Chemotherapy Protocols; Benzenesulfonates; Capecitabine; Clinical Trials as Topic; Deoxycytidine; Erlotinib Hydrochloride; Fluorouracil; Gemcitabine; Humans; Lapatinib; Medicine, Chinese Traditional; Niacinamide; Pancreatic Neoplasms; Phenylurea Compounds; Pyridines; Quinazolines; Sorafenib; Treatment Outcome | 2011 |
[Renal tolerance of targeted therapies].
Topics: Antibodies, Monoclonal; Benzenesulfonates; Boronic Acids; Bortezomib; Erlotinib Hydrochloride; Glomerulonephritis; Humans; Indoles; Kidney; Kidney Tubules; Lapatinib; Molecular Targeted Therapy; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Pyrazines; Pyridines; Pyrroles; Quinazolines; Sirolimus; Sorafenib; Sunitinib | 2012 |
Simultaneous analysis of anticancer agents bortezomib, imatinib, nilotinib, dasatinib, erlotinib, lapatinib, sorafenib, sunitinib and vandetanib in human plasma using LC/MS/MS.
Topics: Antineoplastic Agents; Benzamides; Boronic Acids; Bortezomib; Chromatography, Liquid; Dasatinib; Erlotinib Hydrochloride; Humans; Imatinib Mesylate; Indoles; Lapatinib; Niacinamide; Phenylurea Compounds; Piperazines; Piperidines; Pyrazines; Pyrimidines; Pyrroles; Quinazolines; Reproducibility of Results; Sorafenib; Sunitinib; Tandem Mass Spectrometry; Thiazoles | 2013 |
Development and validation of a high-performance liquid chromatography ultraviolet method for lapatinib quantification in human plasma.
Topics: Acetonitriles; Administration, Oral; Antineoplastic Agents; Calibration; Chromatography, High Pressure Liquid; Drug Monitoring; Humans; Lapatinib; Limit of Detection; Niacinamide; Phenylurea Compounds; Quinazolines; Sorafenib; Spectrophotometry, Ultraviolet | 2013 |
Development and validation of an HPLC-UV method for sorafenib quantification in human plasma and application to patients with cancer in routine clinical practice.
Topics: Antineoplastic Agents; Area Under Curve; Calibration; Chromatography, High Pressure Liquid; Dose-Response Relationship, Drug; Drug Monitoring; Humans; Lapatinib; Metabolic Clearance Rate; Neoplasms; Niacinamide; Phenylurea Compounds; Quinazolines; Reproducibility of Results; Sorafenib; Spectrophotometry, Ultraviolet | 2014 |
Activity of anti-cancer protein kinase inhibitors against Leishmania spp.
Topics: Animals; Antineoplastic Agents; Antiprotozoal Agents; Disease Models, Animal; Drug Repositioning; Indoles; Inhibitory Concentration 50; Lapatinib; Leishmania; Leishmaniasis; Mice, Inbred BALB C; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Pyrroles; Quinazolines; Sorafenib; Sunitinib; Treatment Outcome | 2014 |
Investigation of antitumor effects of sorafenib and lapatinib alone and in combination on MCF-7 breast cancer cells.
Topics: Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Breast Neoplasms; Cell Line, Tumor; Cell Survival; Drug Evaluation, Preclinical; Drug Synergism; ErbB Receptors; Female; Humans; Lapatinib; MCF-7 Cells; Molecular Targeted Therapy; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Quinazolines; Sorafenib; Vascular Endothelial Growth Factor A | 2014 |
Sorafenib/regorafenib and lapatinib interact to kill CNS tumor cells.
Topics: Anoikis; Antineoplastic Agents; Apoptosis Regulatory Proteins; Autophagy-Related Protein 5; bcl-X Protein; Beclin-1; Brain Neoplasms; CASP8 and FADD-Like Apoptosis Regulating Protein; Caspase 9; Cell Line, Tumor; Drug Synergism; ErbB Receptors; fas Receptor; Fas-Associated Death Domain Protein; Glioblastoma; Humans; Lapatinib; Lysosomal-Associated Membrane Protein 2; MAP Kinase Kinase 1; Membrane Proteins; Microtubule-Associated Proteins; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; PTEN Phosphohydrolase; Pyridines; Quinazolines; Sorafenib; TOR Serine-Threonine Kinases; Unfolded Protein Response | 2015 |
Early decline in serum phospho-CSE1L levels in vemurafenib/sunitinib-treated melanoma and sorafenib/lapatinib-treated colorectal tumor xenografts.
Topics: Animals; Antibodies, Neoplasm; Cell Line, Tumor; Cell Proliferation; Cellular Apoptosis Susceptibility Protein; Colorectal Neoplasms; Extracellular Signal-Regulated MAP Kinases; Humans; Indoles; Lapatinib; Male; Melanoma; Mice, Inbred NOD; Mice, SCID; Niacinamide; Phenylurea Compounds; Phosphorylation; Pyrroles; Quinazolines; Sorafenib; Sulfonamides; Sunitinib; Vemurafenib; Xenograft Model Antitumor Assays | 2015 |
Target prices for mass production of tyrosine kinase inhibitors for global cancer treatment.
Topics: Antineoplastic Agents; Commerce; Drug Industry; Erlotinib Hydrochloride; Global Health; Humans; Imatinib Mesylate; Lapatinib; Neoplasms; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Quinazolines; Sorafenib | 2016 |
Inhibition of human UDP-glucuronosyltransferase enzymes by lapatinib, pazopanib, regorafenib and sorafenib: Implications for hyperbilirubinemia.
Topics: Bilirubin; Catalysis; Enzyme Inhibitors; Glucuronosyltransferase; Humans; Hyperbilirubinemia; Indazoles; Kinetics; Lapatinib; Microsomes, Liver; Niacinamide; Phenylurea Compounds; Pyridines; Pyrimidines; Quinazolines; Sorafenib; Sulfonamides | 2017 |
Selection of Protein Kinase Inhibitors Based on Tumor Tissue Kinase Activity Profiles in Patients with Refractory Solid Malignancies: An Interventional Molecular Profiling Study.
Topics: Adult; Aged; Antineoplastic Agents; Dasatinib; Erlotinib Hydrochloride; Everolimus; Female; Humans; Lapatinib; Male; Middle Aged; Neoplasms; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Sorafenib; Sunitinib | 2018 |
Fingolimod sensitizes EGFR wild‑type non‑small cell lung cancer cells to lapatinib or sorafenib and induces cell cycle arrest.
Topics: A549 Cells; Autophagy-Related Proteins; Carcinoma, Non-Small-Cell Lung; Cell Cycle; Cell Line, Tumor; Cell Movement; Cell Proliferation; Cell Survival; Drug Repositioning; Drug Resistance, Neoplasm; Drug Synergism; ErbB Receptors; Fingolimod Hydrochloride; Humans; Lapatinib; Lung Neoplasms; Protein Kinase Inhibitors; Sorafenib | 2019 |
Adaptation of Human iPSC-Derived Cardiomyocytes to Tyrosine Kinase Inhibitors Reduces Acute Cardiotoxicity via Metabolic Reprogramming.
Topics: Acclimatization; Antineoplastic Agents; Cardiotoxicity; Cell Differentiation; Cells, Cultured; Erlotinib Hydrochloride; Gene Expression Profiling; Humans; Induced Pluripotent Stem Cells; Lapatinib; Myocytes, Cardiac; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Signal Transduction; Sorafenib; Sunitinib | 2019 |
Assessment of modelling strategies for drug response prediction in cell lines and xenografts.
Topics: Animals; Biomarkers, Pharmacological; Cell Line, Tumor; Erlotinib Hydrochloride; Humans; Imidazoles; Indoles; Lapatinib; Machine Learning; Mice; Neoplasms; Organ Specificity; Paclitaxel; Piperazines; Prognosis; Pyrimidines; Sorafenib; Sulfonamides; Xenograft Model Antitumor Assays | 2020 |
Differential Inhibitory Actions of Multitargeted Tyrosine Kinase Inhibitors on Different Ionic Current Types in Cardiomyocytes.
Topics: Action Potentials; Animals; Humans; Ion Channels; Ion Transport; Isoproterenol; Lapatinib; Mice; Myocytes, Cardiac; Neoplasms; Potassium; Potassium Channels; Protein Kinase Inhibitors; Rats; Sodium; Sorafenib | 2020 |
Design and synthesis of some new 6-bromo-2-(pyridin-3-yl)-4-substituted quinazolines as multi tyrosine kinase inhibitors.
Topics: Antineoplastic Agents; Cell Proliferation; Drug Screening Assays, Antitumor; ErbB Receptors; Humans; Lapatinib; Molecular Docking Simulation; Molecular Structure; Protein Kinase Inhibitors; Quinazolines; Sorafenib; Structure-Activity Relationship; Vascular Endothelial Growth Factor Receptor-2 | 2022 |
Identification of an Oxidative Stress-Related LncRNA Signature for Predicting Prognosis and Chemotherapy in Patients With Hepatocellular Carcinoma.
Topics: Biomarkers, Tumor; Carcinoma, Hepatocellular; Dasatinib; Erlotinib Hydrochloride; Gefitinib; Gene Expression Regulation, Neoplastic; Humans; Lapatinib; Liver Neoplasms; Oxidative Stress; Prognosis; RNA, Long Noncoding; Sorafenib | 2022 |