Page last updated: 2024-09-05

sorafenib and dasatinib

sorafenib has been researched along with dasatinib in 59 studies

Compound Research Comparison

Studies
(sorafenib)
Trials
(sorafenib)
Recent Studies (post-2010)
(sorafenib)
Studies
(dasatinib)
Trials
(dasatinib)
Recent Studies (post-2010) (dasatinib)
6,5207305,2512,7072162,081

Protein Interaction Comparison

ProteinTaxonomysorafenib (IC50)dasatinib (IC50)
Aurora kinase AHomo sapiens (human)2.633
Mitogen-activated protein kinase 13Homo sapiens (human)0.1
Receptor-interacting serine/threonine-protein kinase 2Homo sapiens (human)0.109
Bile salt export pumpHomo sapiens (human)10
Tyrosine-protein kinase ABL1Homo sapiens (human)0.9374
Proto-oncogene tyrosine-protein kinase SrcGallus gallus (chicken)0.1922
Epidermal growth factor receptorHomo sapiens (human)0.7144
RAF proto-oncogene serine/threonine-protein kinaseHomo sapiens (human)0.164
Receptor tyrosine-protein kinase erbB-2Homo sapiens (human)0.71
Tyrosine-protein kinase LckHomo sapiens (human)0.0015
Proto-oncogene tyrosine-protein kinase LCK Mus musculus (house mouse)0.0004
Tyrosine-protein kinase FynHomo sapiens (human)0.0012
Macrophage colony-stimulating factor 1 receptorHomo sapiens (human)0.0078
Tyrosine-protein kinase YesHomo sapiens (human)0.0006
Tyrosine-protein kinase LynHomo sapiens (human)0.0012
Proto-oncogene tyrosine-protein kinase receptor RetHomo sapiens (human)1.2665
Tyrosine-protein kinase HCKHomo sapiens (human)0.001
Platelet-derived growth factor receptor betaHomo sapiens (human)0.028
Mast/stem cell growth factor receptor KitHomo sapiens (human)0.0276
Breakpoint cluster region proteinHomo sapiens (human)0.4946
Fibroblast growth factor receptor 1Homo sapiens (human)0.88
Proto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)0.0015
Platelet-derived growth factor receptor alphaHomo sapiens (human)0.0365
Tyrosine-protein kinase BlkMus musculus (house mouse)0.008
Ephrin type-A receptor 2Homo sapiens (human)0.0689
Ephrin type-B receptor 2Homo sapiens (human)0.0044
Vascular endothelial growth factor receptor 2Homo sapiens (human)2.36
Dual specificity mitogen-activated protein kinase kinase 2Homo sapiens (human)1.7
Tyrosine-protein kinase CSKHomo sapiens (human)0.0013
Tyrosine-protein kinase TecHomo sapiens (human)0.297
Tyrosine-protein kinase TXKHomo sapiens (human)0.0003
Tyrosine-protein kinase SYKHomo sapiens (human)4.82
Casein kinase I isoform alphaHomo sapiens (human)0.001
LIM domain kinase 1Homo sapiens (human)0.6097
LIM domain kinase 2Homo sapiens (human)0.5186
Mitogen-activated protein kinase 12Homo sapiens (human)0.1
Ephrin type-B receptor 4Homo sapiens (human)0.001
Serine/threonine-protein kinase SIK1Homo sapiens (human)0.001
Myelin transcription factor 1Homo sapiens (human)0.063
Dual specificity mitogen-activated protein kinase kinase 1Homo sapiens (human)1.7
Tyrosine-protein kinase BTKHomo sapiens (human)0.0036
Epithelial discoidin domain-containing receptor 1Homo sapiens (human)0.0143
Tyrosine-protein kinase ITK/TSKHomo sapiens (human)0.228
Protein-tyrosine kinase 6Homo sapiens (human)0.0071
Mitogen-activated protein kinase 11Homo sapiens (human)0.1
Mitogen-activated protein kinase 14Homo sapiens (human)0.1
Discoidin domain-containing receptor 2Homo sapiens (human)0.1127
Aurora kinase BHomo sapiens (human)6.485
Membrane-associated tyrosine- and threonine-specific cdc2-inhibitory kinaseHomo sapiens (human)0.104
Serine/threonine-protein kinase SIK2Homo sapiens (human)0.003
Broad substrate specificity ATP-binding cassette transporter ABCG2Homo sapiens (human)2
Serine/threonine-protein kinase SIK3Homo sapiens (human)0.005

Research

Studies (59)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's10 (16.95)29.6817
2010's36 (61.02)24.3611
2020's13 (22.03)2.80

Authors

AuthorsStudies
Atteridge, CE; Campbell, BT; Chan, KW; Ciceri, P; Davis, MI; Edeen, PT; Faraoni, R; Floyd, M; Gallant, P; Herrgard, S; Hunt, JP; Karaman, MW; Lockhart, DJ; Milanov, ZV; Morrison, MJ; Pallares, G; Patel, HK; Pritchard, S; Treiber, DK; Wodicka, LM; Zarrinkar, PP1
Aizenstein, B; Apsel, B; Blair, JA; Feldman, ME; Gonzalez, B; Hoffman, R; Knight, ZA; Nazif, TM; Shokat, KM; Williams, RL1
Morphy, R1
Hajduk, PJ; Johnson, EF; Kifle, L; Merta, PJ; Metz, JT; Soni, NB1
Russu, WA; Shallal, HM1
Ciceri, P; Davis, MI; Herrgard, S; Hocker, M; Hunt, JP; Pallares, G; Treiber, DK; Wodicka, LM; Zarrinkar, PP1
Cantin, LD; Chen, H; Kenna, JG; Noeske, T; Stahl, S; Walker, CL; Warner, DJ1
Akita, K; Gouda, M; Kirii, Y; Kitagawa, D; Narumi, Y; Nishiwaki, E; Ohmoto, H; Yokota, K1
Davis, MI; Khan, J; Li, SQ; Patel, PR; Shen, M; Sun, H; Thomas, CJ1
Engel, J; Grütter, C; Nguyen, HD; Phan, T; Rauh, D; Richters, A; Simard, JR1
Bullock, AN; Canning, P; Choi, S; Cuny, GD; Mohedas, AH; Sanvitale, CE; Wang, Y; Xing, X; Yu, PB1
Ding, K; Li, Y; Lu, X; Ren, X1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1
Bestgen, B; Borjini, N; Chevé, G; Daydé-Cazals, B; Fauvel, B; Feneyrolles, C; Gassiot, F; Singer, M; Spenlinhauer, A; Van Hijfte, N; Warnault, P; Yasri, A1
Aiche, S; Bassermann, F; Becker, W; Canevari, G; Casale, E; Depaolini, SR; Ehrlich, HC; Felder, ER; Feuchtinger, A; Garz, AK; Gohlke, BO; Götze, K; Greif, PA; Hahne, H; Heinzlmeir, S; Helm, D; Huenges, J; Jeremias, I; Kayser, G; Klaeger, S; Koch, H; Koenig, PA; Kramer, K; Kuster, B; Médard, G; Meng, C; Petzoldt, S; Polzer, H; Preissner, R; Qiao, H; Reinecke, M; Reiter, K; Rueckert, L; Ruland, J; Ruprecht, B; Schlegl, J; Schmidt, T; Schneider, S; Schoof, M; Spiekermann, K; Tõnisson, N; Vick, B; Vooder, T; Walch, A; Wilhelm, M; Wu, Z; Zecha, J; Zolg, DP1
Cao, DS; Chen, AF; Chen, XS; Cheng, Y; Guan, YD; Jiang, SL; Yang, JM; Zhang, LX; Zhang, Y1
Abuo-Rahma, GEA; Badr, M; Bass, AKA; El-Zoghbi, MS; Mohamed, MFA; Nageeb, EM1
Bharate, SB; Raghuvanshi, R1
Caballero, E; García-Cárceles, J; Gil, C; Martínez, A1
Laufer, S; Pillaiyar, T1
Delabio, LC; Dutra, JP; Hembecker, M; Kita, DH; Moure, VR; Pereira, GDS; Scheiffer, G; Valdameri, G; Zattoni, IF1
Curtiss, FR1
Agaram, NP; Antonescu, CR; Besmer, P; Clarkson, BD; D'Adamo, D; DeMatteo, RP; Guo, T; Hom, G; Maki, RG; Schwartz, GK; Singer, S; Veach, D; Wong, GC1
Thomas, X1
Faivre, S; Le Tourneau, C; Raymond, E1
Dykens, JA; Hirakawa, B; Hynes, J; Jamieson, J; Jessen, BA; Marroquin, LD; Nadanaciva, S; Patyna, S; Will, Y1
Clynes, M; Crown, J; Eustace, AJ; O'Donovan, N1
Decosterd, LA; Duchosal, MA; Haouala, A; Leyvraz, S; Montemurro, M; Ris, HB; Rochat, B; Widmer, N; Zaman, K; Zanolari, B1
Gelderblom, H; Guchelaar, HJ; van Erp, NP1
Agostino, NM; Chinchilli, VM; Drabick, JJ; Gingrich, R; Koszyk-Szewczyk, A; Lynch, CJ; Sivik, J1
Geoerger, B; Leblond, P1
Akita, K; Fujii, I; Gouda, M; Ishihama, Y; Kirii, Y; Kitagawa, D; Narumi, Y; Sugiyama, N; Yokota, K1
Corey, SJ; Park, BJ; Whichard, ZL1
Celeghini, C; Melloni, E; Norcio, A; Secchiero, P; Voltan, R; Zauli, G1
Claasen, J; Frenzel, LP; Gehrke, I; Hallek, M; Krause, G; Kuckertz, M; Patz, M; Veldurthy, A; Wendtner, CM1
Balakrishnar, B; Clements, A; Gao, B; Gurney, H; Wong, M; Yeap, S1
Chang, AY; Wang, M1
Albizua, E; Arenas, A; Ayala, R; Barrio, S; Burgaleta, C; Gallardo, M; Gilsanz, F; Jiménez-Ubieto, A; Martinez-Lopez, J; Rapado, I; Rueda, D1
Andriamanana, I; Duretz, B; Gana, I; Hulin, A1
Robert, C; Sibaud, V1
Beijnen, JH; de Vries, N; Schinkel, AH; Sparidans, RW; Tang, SC; Wagenaar, E1
Bergot, E; Godinas, L; Guignabert, C; Humbert, M; Montani, D; Perros, F; Seferian, A; Sibille, Y1
Ding, JF; Zhong, DF1
Fan, L; Han, TT; Li, JY; Xu, W1
Beaune, P; de Waziers, I; Favre, A; Figg, WD; Kiehl, P; McMullen, J; Montemurro, M; Narjoz, C; Rochat, B1
Galanis, A; Levis, M1
de Bont, ES; den Dunnen, WF; Hoving, EW; Kampen, KR; Lourens, HJ; Meeuwsen-de Boer, TG; Scherpen, FJ; Sie, M; Zomerman, WW1
Bose, SK; Di Bisceglie, AM; Kwon, YC; Meyer, K; Ray, R; Ray, RB; Steele, R1
Ha, AS; Imran, TF; Joseph, J; Shah, R; Thomas, R1
Brossart, P; Diehl, L; Garbi, N; Gevensleben, H; Grünwald, B; Heine, A; Held, SA; Höchst, B; Knolle, P; Krüger, A; Kurts, C; Schilling, J1
Alonso, V; Asensio, E; Camps, J; Castells, A; Codony-Servat, J; Cuatrecasas, M; Escudero, P; Feliu, J; Fernández-Martos, C; Gaba, L; Gallego, J; García-Albéniz, X; Horndler, C; Jares, P; Marín-Aguilera, M; Martín-Richard, M; Martínez-Balibrea, E; Martínez-Cardús, A; Maurel, J; Méndez, JC; Méndez, M; Montironi, C; Prat, A; Reig, O; Rojo, F; Rosell, R; Rubini, M; Salud, A; Victoria, I1
Dekker, H; Labots, M; Meijer, GA; Pham, TV; Ruijter, R; Van der Hoeven, JJM; Van der Mijn, JC; Van der Vliet, HJ; Verheul, HMW1
Chao, WT; Cheng, CC; Hsu, YH; Lai, YS; Liu, YH; Shih, JH1
Abdelhameed, AS; Al-Shakliah, NS; Alanazi, AM; AlRabiah, H; Attwa, MW; Hassan, ES1
Abdelhameed, AS; Alanazi, AM; AlRabiah, H; Alruqi, OS; Attia, MI; Attwa, MW1
Brouwer, KLR; Ho, H; Honkakoski, P; Niskanen, J; Saran, C; Sundqvist, L1
Cole, BL; Leary, SES; Lockwood, CM; Starr, K1
Tan, J; Xu, M; Zhong, Z1
Fey, D; Malik, IA; Rajput, M; Salehzadeh, N; von Arnim, CAF; Werner, R; Wilting, J1

Reviews

16 review(s) available for sorafenib and dasatinib

ArticleYear
Selectively nonselective kinase inhibition: striking the right balance.
    Journal of medicinal chemistry, 2010, Feb-25, Volume: 53, Issue:4

    Topics: Animals; Antineoplastic Agents; Drug Design; Drug Discovery; Humans; Protein Binding; Protein Kinase Inhibitors; Structure-Activity Relationship

2010
Small molecule discoidin domain receptor kinase inhibitors and potential medical applications.
    Journal of medicinal chemistry, 2015, Apr-23, Volume: 58, Issue:8

    Topics: Amino Acid Sequence; Animals; Discoidin Domain Receptors; Drug Discovery; Humans; Inflammation; Ligands; Models, Molecular; Molecular Sequence Data; Neoplasms; Protein Conformation; Protein Kinase Inhibitors; Receptor Protein-Tyrosine Kinases; Receptors, Mitogen; Small Molecule Libraries

2015
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016
Comprehensive review for anticancer hybridized multitargeting HDAC inhibitors.
    European journal of medicinal chemistry, 2021, Jan-01, Volume: 209

    Topics: Androgen Antagonists; Animals; Antineoplastic Agents; Benzimidazoles; Cyclic Nucleotide Phosphodiesterases, Type 5; Daunorubicin; Doxorubicin; fms-Like Tyrosine Kinase 3; Histone Deacetylase Inhibitors; Humans; Hydroxamic Acids; Molecular Targeted Therapy; Morpholines; Nicotinamide Phosphoribosyltransferase; Nitric Oxide; Pyrimidines; Quinazolines; Structure-Activity Relationship; Transcription Factors

2021
Kinase Inhibitors as Underexplored Antiviral Agents.
    Journal of medicinal chemistry, 2022, 01-27, Volume: 65, Issue:2

    Topics: Animals; Antiviral Agents; Drug Repositioning; Humans; Protein Kinase Inhibitors; Virus Diseases; Viruses

2022
Kinases as Potential Therapeutic Targets for Anti-coronaviral Therapy.
    Journal of medicinal chemistry, 2022, 01-27, Volume: 65, Issue:2

    Topics: Antiviral Agents; COVID-19; COVID-19 Drug Treatment; Humans; Protein Kinase Inhibitors; SARS-CoV-2; Signal Transduction; Virus Replication

2022
Targeting breast cancer resistance protein (BCRP/ABCG2): Functional inhibitors and expression modulators.
    European journal of medicinal chemistry, 2022, Jul-05, Volume: 237

    Topics: Antineoplastic Agents; ATP Binding Cassette Transporter, Subfamily G, Member 2; Breast Neoplasms; Drug Resistance, Multiple; Drug Resistance, Neoplasm; Female; Humans; Neoplasm Proteins; Neoplastic Stem Cells

2022
[Acute lymphoblastic leukemia with Philadelphia chromosome: treatment with kinase inhibitors].
    Bulletin du cancer, 2007, Volume: 94, Issue:10

    Topics: Alkyl and Aryl Transferases; Antineoplastic Agents; Benzamides; Benzenesulfonates; Dasatinib; Drug Resistance, Neoplasm; Fusion Proteins, bcr-abl; Humans; Imatinib Mesylate; Indoles; Niacinamide; Phenylurea Compounds; Piperazines; Precursor Cell Lymphoblastic Leukemia-Lymphoma; Protein Kinase Inhibitors; Pyridines; Pyrimidines; Pyrroles; Sorafenib; Sunitinib; Thiazoles

2007
New developments in multitargeted therapy for patients with solid tumours.
    Cancer treatment reviews, 2008, Volume: 34, Issue:1

    Topics: Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Benzamides; Benzenesulfonates; Clinical Trials as Topic; Dasatinib; Drug Delivery Systems; Humans; Imatinib Mesylate; Indoles; Neoplasms; Niacinamide; Phenylurea Compounds; Piperazines; Pyridines; Pyrimidines; Pyrroles; Sorafenib; Sunitinib; Thiazoles

2008
Clinical pharmacokinetics of tyrosine kinase inhibitors.
    Cancer treatment reviews, 2009, Volume: 35, Issue:8

    Topics: Administration, Oral; Antineoplastic Agents; Benzamides; Benzenesulfonates; Biological Availability; Cytochrome P-450 Enzyme System; Dasatinib; Drug Interactions; Erlotinib Hydrochloride; Gefitinib; Humans; Imatinib Mesylate; Indoles; Intestinal Absorption; Lapatinib; Niacinamide; Phenylurea Compounds; Piperazines; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Pyridines; Pyrimidines; Pyrroles; Quinazolines; Sorafenib; Sunitinib; Thiazoles; Tissue Distribution

2009
[Indications and current development of new targeted therapies in pediatric oncology].
    Bulletin du cancer, 2011, Volume: 98, Issue:5

    Topics: Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Benzamides; Benzenesulfonates; Bevacizumab; Child; Dasatinib; Erlotinib Hydrochloride; Hedgehog Proteins; Humans; Imatinib Mesylate; Indoles; Integrins; Molecular Targeted Therapy; Neoplasms; Niacinamide; Nifurtimox; Phenylurea Compounds; Piperazines; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Pyridines; Pyrimidines; Pyrroles; Quinazolines; Sorafenib; Sunitinib; Thiazoles; TOR Serine-Threonine Kinases

2011
Evidence for therapeutic drug monitoring of targeted anticancer therapies.
    Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 2012, Nov-10, Volume: 30, Issue:32

    Topics: Animals; Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antibodies, Monoclonal, Murine-Derived; Antineoplastic Agents; Area Under Curve; Benzamides; Benzenesulfonates; Cetuximab; Dasatinib; Drug Monitoring; Everolimus; Evidence-Based Medicine; Half-Life; Humans; Imatinib Mesylate; Indoles; Injections, Intravenous; Molecular Targeted Therapy; Neoplasms; Niacinamide; Phenylurea Compounds; Piperazines; Pyridines; Pyrimidines; Pyrroles; Rituximab; Sirolimus; Sorafenib; Sunitinib; Thiazoles

2012
[Pigmentary disorders induced by anticancer agents. Part II: targeted therapies].
    Annales de dermatologie et de venereologie, 2013, Volume: 140, Issue:4

    Topics: Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Benzamides; Cetuximab; Dasatinib; ErbB Receptors; Humans; Imatinib Mesylate; Indazoles; Indoles; Ipilimumab; Niacinamide; Phenylurea Compounds; Pigmentation Disorders; Piperazines; Piperidines; Programmed Cell Death 1 Receptor; Protein Kinase Inhibitors; Pyrimidines; Pyrroles; Quinazolines; Receptors, Vascular Endothelial Growth Factor; Sorafenib; Sulfonamides; Sunitinib; Thiazoles

2013
Tyrosine kinase inhibitors in pulmonary arterial hypertension: a double-edge sword?
    Seminars in respiratory and critical care medicine, 2013, Volume: 34, Issue:5

    Topics: Apoptosis; Benzamides; Cell Proliferation; Dasatinib; Endothelial Cells; ErbB Receptors; Familial Primary Pulmonary Hypertension; Fibroblast Growth Factor 2; Fibroblasts; Humans; Hypertension, Pulmonary; Imatinib Mesylate; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Niacinamide; Phenylurea Compounds; Piperazines; Platelet-Derived Growth Factor; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Proto-Oncogene Proteins c-kit; Pulmonary Circulation; Pyrimidines; Receptor Protein-Tyrosine Kinases; Sorafenib; src-Family Kinases; Thiazoles; Treatment Outcome; Vascular Endothelial Growth Factor A

2013
[Clinical pharmacokinetics of small molecule tyrosine kinase inhibitors].
    Yao xue xue bao = Acta pharmaceutica Sinica, 2013, Volume: 48, Issue:7

    Topics: Antineoplastic Agents; Crown Ethers; Cytochrome P-450 Enzyme System; Dasatinib; Drug Interactions; Erlotinib Hydrochloride; Gefitinib; Glucuronosyltransferase; Humans; Imatinib Mesylate; Indoles; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Pyrimidines; Pyrroles; Quinazolines; Sorafenib; Sunitinib

2013
Role of chemokines and their receptors in chronic lymphocytic leukemia: function in microenvironment and targeted therapy.
    Cancer biology & therapy, 2014, Volume: 15, Issue:1

    Topics: Aminopyridines; Antineoplastic Agents; Benzylamines; Chemokine CXCL12; Clinical Trials as Topic; Cyclams; Dasatinib; Heterocyclic Compounds; Humans; Lenalidomide; Leukemia, Lymphocytic, Chronic, B-Cell; Molecular Targeted Therapy; Morpholines; Niacinamide; Oxazines; Phenylurea Compounds; Protein Kinase Inhibitors; Purines; Pyridines; Pyrimidines; Quinazolinones; Receptors, CXCR4; Sorafenib; Thalidomide; Thiazoles; Tumor Microenvironment

2014

Other Studies

43 other study(ies) available for sorafenib and dasatinib

ArticleYear
A quantitative analysis of kinase inhibitor selectivity.
    Nature biotechnology, 2008, Volume: 26, Issue:1

    Topics: Binding Sites; Enzyme Activation; Humans; Phosphotransferases; Protein Binding; Protein Interaction Mapping; Protein Kinase Inhibitors; Proteome; Quantitative Structure-Activity Relationship

2008
Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases.
    Nature chemical biology, 2008, Volume: 4, Issue:11

    Topics: Amino Acid Sequence; Antineoplastic Agents; Apoptosis; Blotting, Western; Catalytic Domain; Cell Proliferation; Cells, Cultured; Crystallography, X-Ray; Drug Delivery Systems; Drug Design; Drug Screening Assays, Antitumor; Enzyme Inhibitors; Fusion Proteins, bcr-abl; Humans; Inhibitory Concentration 50; Models, Molecular; Molecular Sequence Data; Molecular Structure; Phosphoinositide-3 Kinase Inhibitors; Protein Kinases; Protein Subunits; Protein-Tyrosine Kinases; Pyrazoles; Pyrimidines; Sequence Alignment; Signal Transduction; TOR Serine-Threonine Kinases

2008
Navigating the kinome.
    Nature chemical biology, 2011, Volume: 7, Issue:4

    Topics: Drug Design; Pharmacogenetics; Protein Kinases; Proteome; Systems Biology

2011
Discovery, synthesis, and investigation of the antitumor activity of novel piperazinylpyrimidine derivatives.
    European journal of medicinal chemistry, 2011, Volume: 46, Issue:6

    Topics: Antineoplastic Agents; Cell Line, Tumor; Cell Proliferation; Dose-Response Relationship, Drug; Drug Discovery; Drug Screening Assays, Antitumor; Humans; Models, Molecular; Molecular Structure; Piperazines; Protein Kinase Inhibitors; Protein Kinases; Pyrimidines; Stereoisomerism; Structure-Activity Relationship

2011
Comprehensive analysis of kinase inhibitor selectivity.
    Nature biotechnology, 2011, Oct-30, Volume: 29, Issue:11

    Topics: Catalysis; Drug Design; Enzyme Stability; High-Throughput Screening Assays; Humans; Protein Binding; Protein Kinase Inhibitors; Protein Kinases; Proteomics; Signal Transduction; Substrate Specificity

2011
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
    Drug metabolism and disposition: the biological fate of chemicals, 2012, Volume: 40, Issue:12

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Humans; Quantitative Structure-Activity Relationship

2012
Activity-based kinase profiling of approved tyrosine kinase inhibitors.
    Genes to cells : devoted to molecular & cellular mechanisms, 2013, Volume: 18, Issue:2

    Topics: Adenosine Triphosphate; Enzyme Activation; Gene Expression Profiling; Humans; Inhibitory Concentration 50; Kinetics; Mutation; Phylogeny; Protein Binding; Protein Kinase Inhibitors; Protein Kinases; Proteome; Reproducibility of Results

2013
Identification of potent Yes1 kinase inhibitors using a library screening approach.
    Bioorganic & medicinal chemistry letters, 2013, Aug-01, Volume: 23, Issue:15

    Topics: Binding Sites; Cell Line; Cell Survival; Drug Design; Humans; Hydrogen Bonding; Molecular Docking Simulation; Protein Kinase Inhibitors; Protein Structure, Tertiary; Proto-Oncogene Proteins c-yes; Small Molecule Libraries; Structure-Activity Relationship

2013
Identification of type II and III DDR2 inhibitors.
    Journal of medicinal chemistry, 2014, May-22, Volume: 57, Issue:10

    Topics: Discoidin Domain Receptors; Drug Design; Fluorescence; High-Throughput Screening Assays; Ligands; Protein Kinase Inhibitors; Protein Structure, Tertiary; Receptor Protein-Tyrosine Kinases; Receptors, Mitogen; Structure-Activity Relationship

2014
Structure-activity relationship of 3,5-diaryl-2-aminopyridine ALK2 inhibitors reveals unaltered binding affinity for fibrodysplasia ossificans progressiva causing mutants.
    Journal of medicinal chemistry, 2014, Oct-09, Volume: 57, Issue:19

    Topics: Activin Receptors, Type I; Aminopyridines; Humans; Mutation; Myositis Ossificans; Phenols; Protein Kinase Inhibitors; Structure-Activity Relationship

2014
Rational Design, Synthesis, and Biological Evaluation of 7-Azaindole Derivatives as Potent Focused Multi-Targeted Kinase Inhibitors.
    Journal of medicinal chemistry, 2016, 04-28, Volume: 59, Issue:8

    Topics: Animals; Cell Proliferation; Drug Design; Human Umbilical Vein Endothelial Cells; Humans; Indoles; Male; Mice; Patch-Clamp Techniques; Protein Kinase Inhibitors

2016
The target landscape of clinical kinase drugs.
    Science (New York, N.Y.), 2017, 12-01, Volume: 358, Issue:6367

    Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; Cytokines; Drug Discovery; fms-Like Tyrosine Kinase 3; Humans; Leukemia, Myeloid, Acute; Lung Neoplasms; Mice; Molecular Targeted Therapy; Protein Kinase Inhibitors; Protein Serine-Threonine Kinases; Proteomics; Xenograft Model Antitumor Assays

2017
A multi-scale systems pharmacology approach uncovers the anti-cancer molecular mechanism of Ixabepilone.
    European journal of medicinal chemistry, 2020, Aug-01, Volume: 199

    Topics: Animals; Antineoplastic Agents; Apoptosis; Cell Proliferation; Dose-Response Relationship, Drug; Drug Screening Assays, Antitumor; Epothilones; Female; Humans; Mammary Neoplasms, Experimental; Mice; Mice, Inbred BALB C; Mice, Nude; Molecular Structure; Proto-Oncogene Proteins c-bcl-2; Structure-Activity Relationship; Tumor Cells, Cultured

2020
Recent Developments in the Use of Kinase Inhibitors for Management of Viral Infections.
    Journal of medicinal chemistry, 2022, 01-27, Volume: 65, Issue:2

    Topics: Antiviral Agents; COVID-19; COVID-19 Drug Treatment; Drug Approval; Drug Repositioning; High-Throughput Screening Assays; Humans; Protein Kinase Inhibitors; SARS-CoV-2; United States; United States Food and Drug Administration; Virus Diseases

2022
Pharmacy benefit spending on oral chemotherapy drugs.
    Journal of managed care pharmacy : JMCP, 2006, Volume: 12, Issue:7

    Topics: Administration, Oral; Ambulatory Care; Antineoplastic Agents; Benzamides; Benzenesulfonates; Capecitabine; Dasatinib; Deoxycytidine; Drug Costs; Employer Health Costs; Erlotinib Hydrochloride; Fluorouracil; Gefitinib; Health Benefit Plans, Employee; Humans; Imatinib Mesylate; Indoles; Insurance, Pharmaceutical Services; Lenalidomide; Neoplasms; Niacinamide; Phenylurea Compounds; Piperazines; Prescription Fees; Pyridines; Pyrimidines; Pyrroles; Quinazolines; Sorafenib; Sunitinib; Thalidomide; Thiazoles; United States

2006
Sorafenib inhibits the imatinib-resistant KITT670I gatekeeper mutation in gastrointestinal stromal tumor.
    Clinical cancer research : an official journal of the American Association for Cancer Research, 2007, Aug-15, Volume: 13, Issue:16

    Topics: Animals; Antineoplastic Agents; Apoptosis; Benzamides; Benzenesulfonates; Cell Proliferation; Dasatinib; Drug Resistance, Neoplasm; Gastrointestinal Stromal Tumors; Humans; Imatinib Mesylate; Mice; Mutation; Niacinamide; Phenylurea Compounds; Phosphorylation; Piperazines; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-kit; Pyridines; Pyrimidines; Sorafenib; Thiazoles

2007
Effect of the multitargeted tyrosine kinase inhibitors imatinib, dasatinib, sunitinib, and sorafenib on mitochondrial function in isolated rat heart mitochondria and H9c2 cells.
    Toxicological sciences : an official journal of the Society of Toxicology, 2008, Volume: 106, Issue:1

    Topics: Adenosine Triphosphate; Animals; Benzamides; Benzenesulfonates; Cell Survival; Dasatinib; Dose-Response Relationship, Drug; Electron Transport; Galactose; Glucose; Imatinib Mesylate; Indoles; Male; Mitochondria, Heart; Mitochondrial Membrane Transport Proteins; Mitochondrial Permeability Transition Pore; Myocytes, Cardiac; Niacinamide; Oxidative Phosphorylation; Phenylurea Compounds; Piperazines; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Pyridines; Pyrimidines; Pyrroles; Rats; Rats, Sprague-Dawley; Sorafenib; Sunitinib; Thiazoles

2008
Preclinical evaluation of dasatinib, a potent Src kinase inhibitor, in melanoma cell lines.
    Journal of translational medicine, 2008, Sep-29, Volume: 6

    Topics: Antineoplastic Agents; Apoptosis; Benzenesulfonates; Blotting, Western; Cell Cycle; Cell Line, Tumor; Cell Movement; Cell Proliferation; Dacarbazine; Dasatinib; Drug Screening Assays, Antitumor; Drug Synergism; Focal Adhesion Protein-Tyrosine Kinases; Humans; Melanoma; Neoplasm Invasiveness; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Proto-Oncogene Proteins pp60(c-src); Pyridines; Pyrimidines; Receptor, EphA2; Sorafenib; Temozolomide; Thiazoles

2008
Therapeutic Drug Monitoring of the new targeted anticancer agents imatinib, nilotinib, dasatinib, sunitinib, sorafenib and lapatinib by LC tandem mass spectrometry.
    Journal of chromatography. B, Analytical technologies in the biomedical and life sciences, 2009, Jul-15, Volume: 877, Issue:22

    Topics: Antineoplastic Agents; Benzamides; Benzenesulfonates; Chromatography, Liquid; Dasatinib; Drug Monitoring; Humans; Imatinib Mesylate; Indoles; Lapatinib; Neoplasms; Niacinamide; Phenylurea Compounds; Piperazines; Pyridines; Pyrimidines; Pyrroles; Quinazolines; Sorafenib; Sunitinib; Tandem Mass Spectrometry; Thiazoles

2009
Effect of the tyrosine kinase inhibitors (sunitinib, sorafenib, dasatinib, and imatinib) on blood glucose levels in diabetic and nondiabetic patients in general clinical practice.
    Journal of oncology pharmacy practice : official publication of the International Society of Oncology Pharmacy Practitioners, 2011, Volume: 17, Issue:3

    Topics: Aged; Antineoplastic Agents; Benzamides; Benzenesulfonates; Blood Glucose; Dasatinib; Diabetes Mellitus; Female; Humans; Hypoglycemia; Hypoglycemic Agents; Imatinib Mesylate; Indoles; Linear Models; Male; Middle Aged; Neoplasms; Niacinamide; Pennsylvania; Phenylurea Compounds; Piperazines; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Pyridines; Pyrimidines; Pyrroles; Retrospective Studies; Risk Assessment; Risk Factors; Sorafenib; Sunitinib; Thiazoles; Time Factors; Treatment Outcome

2011
Characterization of kinase inhibitors using different phosphorylation states of colony stimulating factor-1 receptor tyrosine kinase.
    Journal of biochemistry, 2012, Volume: 151, Issue:1

    Topics: Animals; Benzamides; Benzenesulfonates; Binding, Competitive; Cell Line; Dasatinib; Dose-Response Relationship, Drug; Humans; Imatinib Mesylate; Indazoles; Indoles; Kinetics; Niacinamide; Phenylurea Compounds; Phosphorylation; Piperazines; Protein Kinase Inhibitors; Pyridines; Pyrimidines; Pyrroles; Receptor, Macrophage Colony-Stimulating Factor; Sorafenib; Spodoptera; Staurosporine; Sulfonamides; Sunitinib; Surface Plasmon Resonance; Thiazoles; Transfection

2012
Dasatinib synergizes with both cytotoxic and signal transduction inhibitors in heterogeneous breast cancer cell lines--lessons for design of combination targeted therapy.
    Cancer letters, 2012, Jul-01, Volume: 320, Issue:1

    Topics: Antineoplastic Combined Chemotherapy Protocols; Benzenesulfonates; Breast Neoplasms; Butadienes; Cell Line, Tumor; Chromones; Dasatinib; Dose-Response Relationship, Drug; Drug Synergism; Enzyme Inhibitors; Epothilones; Female; Humans; Morpholines; Niacinamide; Nitriles; Paclitaxel; Phenylurea Compounds; Pyridines; Pyrimidines; Signal Transduction; Sirolimus; Sorafenib; Tamoxifen; Thiazoles

2012
MCL1 down-regulation plays a critical role in mediating the higher anti-leukaemic activity of the multi-kinase inhibitor Sorafenib with respect to Dasatinib.
    British journal of haematology, 2012, Volume: 157, Issue:4

    Topics: Antineoplastic Agents; Benzenesulfonates; Cell Line, Tumor; Dasatinib; Down-Regulation; Humans; Leukemia, Myeloid, Acute; Myeloid Cell Leukemia Sequence 1 Protein; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-bcl-2; Pyridines; Pyrimidines; Sorafenib; Thiazoles

2012
Comparison of the effects of two kinase inhibitors, sorafenib and dasatinib, on chronic lymphocytic leukemia cells.
    Onkologie, 2012, Volume: 35, Issue:7-8

    Topics: Benzenesulfonates; Cell Survival; Dasatinib; Dose-Response Relationship, Drug; Humans; Lethal Dose 50; Leukemia, Lymphocytic, Chronic, B-Cell; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Pyridines; Pyrimidines; Sorafenib; Thiazoles; Treatment Outcome; Tumor Cells, Cultured

2012
In-vitro growth inhibition of chemotherapy and molecular targeted agents in hepatocellular carcinoma.
    Anti-cancer drugs, 2013, Volume: 24, Issue:3

    Topics: Alanine; alpha-Fetoproteins; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Benzimidazoles; Carcinoma, Hepatocellular; Cetuximab; Dasatinib; Doxorubicin; Drug Screening Assays, Antitumor; Epothilones; Gefitinib; Humans; Indoles; Inhibitory Concentration 50; Liver Neoplasms; Niacinamide; Phenylurea Compounds; Piperidines; Pyridones; Pyrimidines; Pyrroles; Quinazolines; Sorafenib; Sunitinib; Thiazoles; Triazines

2013
Inhibition of related JAK/STAT pathways with molecular targeted drugs shows strong synergy with ruxolitinib in chronic myeloproliferative neoplasm.
    British journal of haematology, 2013, Volume: 161, Issue:5

    Topics: Adult; Aged; Aged, 80 and over; Benzhydryl Compounds; Cell Proliferation; Cells, Cultured; Chronic Disease; Dasatinib; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Drug Synergism; Female; Humans; Janus Kinase 2; Janus Kinases; Male; Middle Aged; Myeloproliferative Disorders; Niacinamide; Nitriles; Phenylurea Compounds; Phosphorylcholine; Polycythemia Vera; Protein Kinase Inhibitors; Pyrazoles; Pyrimidines; Pyrrolidinones; Signal Transduction; Sorafenib; STAT5 Transcription Factor; Thiazoles; Thrombocythemia, Essential; Tumor Cells, Cultured

2013
Simultaneous analysis of anticancer agents bortezomib, imatinib, nilotinib, dasatinib, erlotinib, lapatinib, sorafenib, sunitinib and vandetanib in human plasma using LC/MS/MS.
    Journal of chromatography. B, Analytical technologies in the biomedical and life sciences, 2013, May-01, Volume: 926

    Topics: Antineoplastic Agents; Benzamides; Boronic Acids; Bortezomib; Chromatography, Liquid; Dasatinib; Erlotinib Hydrochloride; Humans; Imatinib Mesylate; Indoles; Lapatinib; Niacinamide; Phenylurea Compounds; Piperazines; Piperidines; Pyrazines; Pyrimidines; Pyrroles; Quinazolines; Reproducibility of Results; Sorafenib; Sunitinib; Tandem Mass Spectrometry; Thiazoles

2013
Impact of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) gene dosage on plasma pharmacokinetics and brain accumulation of dasatinib, sorafenib, and sunitinib.
    The Journal of pharmacology and experimental therapeutics, 2013, Volume: 346, Issue:3

    Topics: Animals; Area Under Curve; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; Brain; Dasatinib; DNA, Complementary; Female; Gene Dosage; Half-Life; Indoles; Male; Maternal-Fetal Exchange; Mice; Mice, Knockout; Niacinamide; Phenylurea Compounds; Pregnancy; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Pyrimidines; Pyrroles; Real-Time Polymerase Chain Reaction; RNA; Sex Characteristics; Sorafenib; Sunitinib; Thiazoles

2013
Important role of CYP2J2 in protein kinase inhibitor degradation: a possible role in intratumor drug disposition and resistance.
    PloS one, 2014, Volume: 9, Issue:5

    Topics: Benzamides; Carcinoma, Hepatocellular; Cell Line, Tumor; Cytochrome P-450 CYP1A1; Cytochrome P-450 CYP1B1; Cytochrome P-450 CYP2J2; Cytochrome P-450 CYP3A; Cytochrome P-450 Enzyme System; Dasatinib; Hep G2 Cells; Humans; Imatinib Mesylate; Indoles; Liver Neoplasms; Niacinamide; Phenylurea Compounds; Piperazines; Protein Kinase Inhibitors; Pyrimidines; Pyrroles; Reverse Transcriptase Polymerase Chain Reaction; Sorafenib; Sunitinib; Thiazoles

2014
Inhibition of c-Kit by tyrosine kinase inhibitors.
    Haematologica, 2015, Volume: 100, Issue:3

    Topics: Aminopyridines; Antineoplastic Agents; Benzothiazoles; Biomarkers; Bone Marrow; Cell Line, Tumor; Clinical Trials as Topic; Dasatinib; fms-Like Tyrosine Kinase 3; Gene Expression; Hair; Hematopoietic Stem Cells; Humans; Indazoles; Leukemia, Myeloid, Acute; Niacinamide; Phenylurea Compounds; Pigmentation; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-kit; Pyrimidines; Pyrroles; Sorafenib; Sulfonamides; Thiazoles

2015
Growth-factor-driven rescue to receptor tyrosine kinase (RTK) inhibitors through Akt and Erk phosphorylation in pediatric low grade astrocytoma and ependymoma.
    PloS one, 2015, Volume: 10, Issue:3

    Topics: Apoptosis; Astrocytoma; Brain Neoplasms; Cell Line, Tumor; Cell Movement; Crizotinib; Dasatinib; Ependymoma; Extracellular Signal-Regulated MAP Kinases; Humans; Intercellular Signaling Peptides and Proteins; Niacinamide; Phenylurea Compounds; Phosphorylation; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Pyrazoles; Pyridines; Signal Transduction; Sorafenib

2015
Promotion of Cancer Stem-Like Cell Properties in Hepatitis C Virus-Infected Hepatocytes.
    Journal of virology, 2015, Volume: 89, Issue:22

    Topics: Animals; Biomarkers, Tumor; Carcinoma, Hepatocellular; Cyclic S-Oxides; Dasatinib; Epithelial-Mesenchymal Transition; Female; Hepacivirus; Hepatitis C; Hepatocytes; Humans; Imatinib Mesylate; Liver Neoplasms; Mice; Neoplasm Transplantation; Neoplastic Stem Cells; Niacinamide; Phenylurea Compounds; Proto-Oncogene Proteins c-kit; RNA, Messenger; Sorafenib; Spheroids, Cellular; STAT3 Transcription Factor; Transplantation, Heterologous; Tumor Cells, Cultured

2015
Heart failure associated with small molecule tyrosine kinase inhibitors.
    International journal of cardiology, 2016, Mar-01, Volume: 206

    Topics: Aged; Aged, 80 and over; Dasatinib; Female; Heart Failure; Humans; Indoles; Male; Middle Aged; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Pyrroles; Risk Factors; Sorafenib; Sunitinib

2016
The induction of human myeloid derived suppressor cells through hepatic stellate cells is dose-dependently inhibited by the tyrosine kinase inhibitors nilotinib, dasatinib and sorafenib, but not sunitinib.
    Cancer immunology, immunotherapy : CII, 2016, Volume: 65, Issue:3

    Topics: Celecoxib; Cell Differentiation; Cells, Cultured; Dasatinib; Dose-Response Relationship, Drug; Hepatic Stellate Cells; Humans; Immune Tolerance; Indoles; Monocytes; Myeloid Cells; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Pyrimidines; Pyrroles; Sorafenib; Sunitinib

2016
Nuclear IGF-1R predicts chemotherapy and targeted therapy resistance in metastatic colorectal cancer.
    British journal of cancer, 2017, Dec-05, Volume: 117, Issue:12

    Topics: Aged; Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Bevacizumab; Camptothecin; Cell Nucleus; Cell Survival; Cetuximab; Colorectal Neoplasms; Curcumin; Dasatinib; Drug Resistance, Neoplasm; Fatty Acids, Unsaturated; Female; Fluorouracil; Gene Silencing; HCT116 Cells; HT29 Cells; Humans; Leucovorin; Male; Middle Aged; Molecular Chaperones; Molecular Targeted Therapy; Niacinamide; Organoplatinum Compounds; Oxaliplatin; Panitumumab; Phenylurea Compounds; Protein Inhibitors of Activated STAT; Protein Transport; Proto-Oncogene Proteins B-raf; Proto-Oncogene Proteins p21(ras); Pyrimidines; Pyrroles; Receptor, IGF Type 1; Signal Transduction; Sorafenib

2017
Selection of Protein Kinase Inhibitors Based on Tumor Tissue Kinase Activity Profiles in Patients with Refractory Solid Malignancies: An Interventional Molecular Profiling Study.
    The oncologist, 2018, Volume: 23, Issue:10

    Topics: Adult; Aged; Antineoplastic Agents; Dasatinib; Erlotinib Hydrochloride; Everolimus; Female; Humans; Lapatinib; Male; Middle Aged; Neoplasms; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Sorafenib; Sunitinib

2018
Sorafenib combined with dasatinib therapy inhibits cell viability, migration, and angiogenesis synergistically in hepatocellular carcinoma.
    Cancer chemotherapy and pharmacology, 2021, Volume: 88, Issue:1

    Topics: Carcinoma, Hepatocellular; Cell Line; Cell Line, Tumor; Cell Movement; Cell Proliferation; Cell Survival; Dasatinib; Hep G2 Cells; Human Umbilical Vein Endothelial Cells; Humans; Liver Neoplasms; Neovascularization, Pathologic; Signal Transduction; Sorafenib; Vascular Endothelial Growth Factor A

2021
Simple and efficient spectroscopic-based univariate sequential methods for simultaneous quantitative analysis of vandetanib, dasatinib, and sorafenib in pharmaceutical preparations and biological fluids.
    Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 2021, Nov-05, Volume: 260

    Topics: Dasatinib; Humans; Pharmaceutical Preparations; Piperidines; Quinazolines; Sorafenib; Spectrophotometry

2021
Development of novel univariate and multivariate validated chemometric methods for the analysis of dasatinib, sorafenib, and vandetanib in pure form, dosage forms and biological fluids.
    Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 2022, Jan-05, Volume: 264

    Topics: Calibration; Dasatinib; Humans; Least-Squares Analysis; Piperidines; Quinazolines; Sorafenib; Spectrophotometry

2022
Novel Bile Acid-Dependent Mechanisms of Hepatotoxicity Associated with Tyrosine Kinase Inhibitors.
    The Journal of pharmacology and experimental therapeutics, 2022, Volume: 380, Issue:2

    Topics: Antineoplastic Agents; ATP Binding Cassette Transporter, Subfamily B, Member 11; Bile Acids and Salts; Cells, Cultured; Chemical and Drug Induced Liver Injury; Cholesterol 7-alpha-Hydroxylase; Dasatinib; Hepatocytes; Humans; Indazoles; Organic Anion Transporters, Sodium-Dependent; Protein Kinase Inhibitors; Pyrimidines; Sorafenib; Sulfonamides; Symporters

2022
The "SEED" Study: The Feasibility of Selecting Patient-Specific Biologically Targeted Therapy with Sorafenib, Everolimus, Erlotinib or Dasatinib for Pediatric and Young Adult Patients with Recurrent or Refractory Brain Tumors.
    Frontiers in bioscience (Landmark edition), 2022, 07-12, Volume: 27, Issue:7

    Topics: Brain Neoplasms; Child; Dasatinib; Erlotinib Hydrochloride; Everolimus; Feasibility Studies; Humans; Neoplasm Recurrence, Local; Patient Selection; Prospective Studies; Sorafenib; Young Adult

2022
Identification of an Oxidative Stress-Related LncRNA Signature for Predicting Prognosis and Chemotherapy in Patients With Hepatocellular Carcinoma.
    Pathology oncology research : POR, 2022, Volume: 28

    Topics: Biomarkers, Tumor; Carcinoma, Hepatocellular; Dasatinib; Erlotinib Hydrochloride; Gefitinib; Gene Expression Regulation, Neoplastic; Humans; Lapatinib; Liver Neoplasms; Oxidative Stress; Prognosis; RNA, Long Noncoding; Sorafenib

2022
Differential in vitro effects of targeted therapeutics in primary human liver cancer: importance for combined liver cancer.
    BMC cancer, 2022, Nov-19, Volume: 22, Issue:1

    Topics: Bile Duct Neoplasms; Bile Ducts, Intrahepatic; Carcinoma, Hepatocellular; Cholangiocarcinoma; Dasatinib; Hepatoblastoma; Humans; Liver Neoplasms; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Sirolimus; Sorafenib

2022