sorafenib has been researched along with cytochrome c-t in 13 studies
Studies (sorafenib) | Trials (sorafenib) | Recent Studies (post-2010) (sorafenib) | Studies (cytochrome c-t) | Trials (cytochrome c-t) | Recent Studies (post-2010) (cytochrome c-t) |
---|---|---|---|---|---|
6,520 | 730 | 5,251 | 11,809 | 21 | 5,125 |
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 2 (15.38) | 29.6817 |
2010's | 8 (61.54) | 24.3611 |
2020's | 3 (23.08) | 2.80 |
Authors | Studies |
---|---|
Atkins, MB; Mier, JW; Panka, DJ; Wang, W | 1 |
Chiou, JF; Jen, YM; Liu, TZ; Shiau, CY; Tai, CJ; Wang, YH | 1 |
An, J; Chang, YJ; Chiou, JF; Huang, MT; Liu, TZ; Tai, CJ; Wang, YH; Wei, PL; Wu, CH | 1 |
Alfieri, RR; Belletti, S; Bonelli, MA; Bottini, A; Cavazzoni, A; Dowsett, M; Evans, DB; Fox, SB; Fumarola, C; Galetti, M; Gatti, R; Generali, D; Harris, AL; La Monica, S; Martin, LA; Petronini, PG | 1 |
Chen, N; Chen, XQ; Huang, R; Huang, Y; Zeng, H | 1 |
Bull, VH; Rajalingam, K; Thiede, B | 1 |
Buettner, R; Chang, S; Hedvat, M; Jove, R; Jove, V; Liu, L; Scuto, A; Tian, Y; Van Meter, T; Wen, W; Yang, F; Yen, Y; Yip, ML | 1 |
Cabrera, R; Cao, M; Liu, C; Nelson, DR; Ogunwobi, OO; Puszyk, WM; Tian, C; Wang, T; Zhao, X | 1 |
Aigner, A; Kiprianova, I; Kögel, D; Milosch, N; Mohrenz, IV; Remy, J; Seifert, V | 1 |
Abegg, VF; Bouitbir, J; Grünig, D; Krähenbühl, S; Mingard, C; Paech, F | 1 |
Abdel-Motaal, M; Asem, M; Ebara, M; Elshemy, MM; Gomaa, HF; Nabil, A; Uto, K; Zahran, F | 1 |
Gao, L; Kong, Y; Liang, X; Liu, S; Ma, C; Sun, M; Wu, Z; Yue, X; Zhang, Y | 1 |
Luo, J; Mu, X; Wang, Z; Yang, Q; Zhao, Y | 1 |
13 other study(ies) available for sorafenib and cytochrome c-t
Article | Year |
---|---|
The Raf inhibitor BAY 43-9006 (Sorafenib) induces caspase-independent apoptosis in melanoma cells.
Topics: Apoptosis; Apoptosis Regulatory Proteins; bcl-Associated Death Protein; Benzenesulfonates; Caspases; Cell Line, Tumor; Cell Nucleus; Cytochromes c; Humans; Intracellular Signaling Peptides and Proteins; Melanoma; Mitochondria; Mitochondrial Proteins; Mitogen-Activated Protein Kinases; Niacinamide; Phenylurea Compounds; Phosphorylation; Proto-Oncogene Proteins c-bcl-2; Pyridines; raf Kinases; Sorafenib | 2006 |
Sorafenib induces preferential apoptotic killing of a drug- and radio-resistant Hep G2 cells through a mitochondria-dependent oxidative stress mechanism.
Topics: Antineoplastic Agents; Apoptosis; Benzenesulfonates; Calcium; Carcinoma, Hepatocellular; Caspase 3; Caspase 7; Cell Line, Tumor; Cell Survival; Cytochromes c; Dose-Response Relationship, Drug; Enzyme Activation; Glutathione; Humans; In Situ Nick-End Labeling; Inhibitory Concentration 50; Intracellular Space; Liver Neoplasms; Microscopy, Confocal; Mitochondria; Niacinamide; Oxidative Stress; Phenylurea Compounds; Pyridines; Reactive Oxygen Species; Sorafenib | 2009 |
Glucose-regulated protein 78 is a novel contributor to acquisition of resistance to sorafenib in hepatocellular carcinoma.
Topics: Antineoplastic Agents; Apoptosis; Benzenesulfonates; Blotting, Western; Carcinoma, Hepatocellular; Caspases; Cell Cycle; Cell Proliferation; Cytochromes c; Drug Resistance, Neoplasm; Endoplasmic Reticulum Chaperone BiP; Flow Cytometry; Heat-Shock Proteins; Humans; Liver Neoplasms; Membrane Potential, Mitochondrial; Niacinamide; Phenylurea Compounds; Pyridines; RNA, Small Interfering; Sorafenib; Tumor Cells, Cultured | 2010 |
Synergistic activity of letrozole and sorafenib on breast cancer cells.
Topics: Adaptor Proteins, Signal Transducing; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Apoptosis Inducing Factor; Aromatase; Aromatase Inhibitors; Benzenesulfonates; Breast Neoplasms; Caspase 7; Caspase 9; Cell Cycle; Cell Cycle Proteins; Cell Line, Tumor; Cell Proliferation; Cyclin D1; Cytochromes c; Dose-Response Relationship, Drug; Drug Resistance, Neoplasm; Drug Synergism; Estradiol; Female; Humans; Letrozole; Mechanistic Target of Rapamycin Complex 1; Multiprotein Complexes; Niacinamide; Nitriles; Phenylurea Compounds; Phosphoproteins; Phosphorylation; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerases; Protein Kinase Inhibitors; Proteins; Proto-Oncogene Proteins c-myc; Pyridines; Retinoblastoma Protein; Ribosomal Protein S6 Kinases, 70-kDa; Sorafenib; Testosterone; Time Factors; TOR Serine-Threonine Kinases; Transfection; Triazoles | 2010 |
The multikinase inhibitor sorafenib induces caspase-dependent apoptosis in PC-3 prostate cancer cells.
Topics: Apoptosis; Benzenesulfonates; Caspase 3; Caspases; Cell Line, Tumor; Cytochromes c; Extracellular Signal-Regulated MAP Kinases; Humans; Inhibitor of Apoptosis Proteins; Male; Microtubule-Associated Proteins; Mitochondria; Myeloid Cell Leukemia Sequence 1 Protein; Niacinamide; Phenylurea Compounds; Phosphorylation; Prostatic Neoplasms; Proto-Oncogene Proteins c-bcl-2; Pyridines; Sorafenib; Survivin | 2010 |
Sorafenib-induced mitochondrial complex I inactivation and cell death in human neuroblastoma cells.
Topics: Antineoplastic Agents; Apoptosis; Apoptosis Regulatory Proteins; Benzenesulfonates; Cell Line, Tumor; Cell Shape; Cytochromes c; Down-Regulation; Enzyme Activation; Humans; Membrane Potential, Mitochondrial; Mitochondria; NADH Dehydrogenase; Neuroblastoma; Niacinamide; Phenylurea Compounds; Protein Interaction Maps; Proteolysis; Proteome; Pyridines; Reactive Oxygen Species; Signal Transduction; Sorafenib; Superoxide Dismutase | 2012 |
Bortezomib induces apoptosis and growth suppression in human medulloblastoma cells, associated with inhibition of AKT and NF-ĸB signaling, and synergizes with an ERK inhibitor.
Topics: Amino Acid Chloromethyl Ketones; Antineoplastic Agents; Apoptosis; bcl-2 Homologous Antagonist-Killer Protein; bcl-Associated Death Protein; Boronic Acids; Bortezomib; Caspase 3; Caspase 9; Cerebellar Neoplasms; Cyclin-Dependent Kinase Inhibitor p21; Cyclin-Dependent Kinase Inhibitor p27; Cytochromes c; Drug Synergism; Extracellular Signal-Regulated MAP Kinases; Humans; Medulloblastoma; NF-kappa B; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Pyrazines; Sorafenib; Tumor Cells, Cultured | 2012 |
OPA1 downregulation is involved in sorafenib-induced apoptosis in hepatocellular carcinoma.
Topics: Animals; Apoptosis; Carcinoma, Hepatocellular; Cell Line, Tumor; Cytochromes c; Down-Regulation; Gene Knockdown Techniques; GTP Phosphohydrolases; Humans; Liver; Liver Neoplasms; Mice; Mice, SCID; Mitochondria; Niacinamide; Phenylurea Compounds; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; raf Kinases; ras Proteins; RNA, Small Interfering; Signal Transduction; Sorafenib; Xenograft Model Antitumor Assays | 2013 |
Sorafenib Sensitizes Glioma Cells to the BH3 Mimetic ABT-737 by Targeting MCL1 in a STAT3-Dependent Manner.
Topics: Activating Transcription Factors; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Biphenyl Compounds; Cell Line, Tumor; Cell Survival; Cytochromes c; Gene Knockdown Techniques; Glioma; Humans; Myeloid Cell Leukemia Sequence 1 Protein; Niacinamide; Nitrophenols; Peptide Hydrolases; Phenylurea Compounds; Piperazines; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-bcl-2; Pyridines; Sorafenib; STAT3 Transcription Factor; Sulfonamides; Tyrphostins | 2015 |
Mechanisms of mitochondrial toxicity of the kinase inhibitors ponatinib, regorafenib and sorafenib in human hepatic HepG2 cells.
Topics: Adenosine Triphosphate; Animals; Apoptosis; Cytochromes c; Electron Transport; Hep G2 Cells; Humans; Imidazoles; Lysosomes; Membrane Potential, Mitochondrial; Mice; Mice, Inbred C57BL; Mitochondria, Liver; Mitophagy; Necrosis; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Pyridazines; Pyridines; Sorafenib | 2018 |
Zinc Oxide Nanoparticle Synergizes Sorafenib Anticancer Efficacy with Minimizing Its Cytotoxicity.
Topics: Animals; Antineoplastic Agents; Apoptosis; Caspase 3; Cell Proliferation; Cell Survival; Cytochromes c; DNA; DNA Fragmentation; Female; Metal Nanoparticles; Mice; Oxidative Stress; Sorafenib; Tumor Burden; Zinc Oxide | 2020 |
SREBF2-STARD4 axis confers sorafenib resistance in hepatocellular carcinoma by regulating mitochondrial cholesterol homeostasis.
Topics: Carcinoma, Hepatocellular; Carrier Proteins; Cell Line, Tumor; Cell Proliferation; Cholesterol; Cytochromes c; Drug Resistance, Neoplasm; Homeostasis; Humans; Liver Neoplasms; Membrane Transport Proteins; Sorafenib; Sterol Regulatory Element Binding Protein 2 | 2023 |
Hypoxia-responsive nanocarriers for chemotherapy sensitization via dual-mode inhibition of hypoxia-inducible factor-1 alpha.
Topics: Antineoplastic Agents; Aspartic Acid; Caspase 3; Cell Hypoxia; Cell Line, Tumor; Cytochromes c; Dicumarol; Female; Glutathione; Humans; Hypoxia; Micelles; NAD; NADP; Nitroimidazoles; Oxygen; Phosphates; Polyethylene Glycols; Polymers; Quinones; Sorafenib; Thioredoxins | 2022 |