sorafenib has been researched along with cysteine in 8 studies
Studies (sorafenib) | Trials (sorafenib) | Recent Studies (post-2010) (sorafenib) | Studies (cysteine) | Trials (cysteine) | Recent Studies (post-2010) (cysteine) |
---|---|---|---|---|---|
6,520 | 730 | 5,251 | 31 | 0 | 11 |
6,520 | 730 | 5,251 | 40,132 | 418 | 11,457 |
Protein | Taxonomy | sorafenib (IC50) | cysteine (IC50) |
---|---|---|---|
Excitatory amino acid transporter 1 | Homo sapiens (human) | 376 | |
Excitatory amino acid transporter 3 | Homo sapiens (human) | 161 |
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 3 (37.50) | 24.3611 |
2020's | 5 (62.50) | 2.80 |
Authors | Studies |
---|---|
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
Álamo-Martínez, JM; Barcena, JA; Barrera-Pulido, L; Bernal-Bellido, C; Blanco-Fernández, G; Gila-Bohórquez, A; Gómez-Bravo, MA; González, R; Marín-Gómez, LM; Muntané, J; Navarro-Villarán, E; Nogales-Muñoz, A; Pacheco, D; Padilla, CA; Padillo, FJ; Pereira, S; Rodríguez-Hernández, A; Sarrias-Giménez, A; Serrablo-Requejo, A; Serrano-Díaz-Canedo, J; Soriano-De Castro, LB; Suárez-Artacho, G; Torres-Nieto, MA | 1 |
Barbare, JC; Barget, N; Bodeau, S; Chauffert, B; Coriat, R; François, C; Galmiche, A; Ganne, N; Godin, C; Gutierrez, L; Houessinon, A; Louandre, C; Mongelard, G; Régimbeau, JM; Saidak, Z; Sauzay, C; Takahashi, S | 1 |
Capelletti, MM; Manceau, H; Peoc'h, K; Puy, H | 1 |
Deterding, LJ; Gao, X; Ji, M; Kang, K; Li, L; Li, X; Li, Y; Liu, J; Locasale, JW; Shats, I; Tong, L; Tong, X; Williams, JG; Xu, Q | 1 |
Du, J; Li, Y; Ren, X; Shao, F; Wu, H; Xia, J; Yu, J; Zhou, Y | 1 |
Byun, JK; Choi, YK; Kang, GW; Lee, J; Lee, S; Lee, YR; Park, KG; Park, SY; Song, IS; Yun, JW | 1 |
Guo, F; Jin, X; Meng, J; Ren, D; Sun, Y; Wu, H; Zhang, H | 1 |
2 review(s) available for sorafenib and cysteine
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
Ferroptosis in Liver Diseases: An Overview.
Topics: alpha-Tocopherol; Animals; Autophagy; Chemical and Drug Induced Liver Injury; Cyclohexylamines; Cysteine; Ferroptosis; Glutathione; Heme; Humans; Iron; Kelch-Like ECH-Associated Protein 1; Lipid Peroxidation; Lipoxygenase; Liver Diseases; Liver Neoplasms; Oxidative Stress; Phenylenediamines; Phospholipid Hydroperoxide Glutathione Peroxidase; Piperazines; Quinoxalines; Reactive Oxygen Species; Reperfusion Injury; Signal Transduction; Sorafenib; Spiro Compounds; Sulfasalazine; Tumor Suppressor Protein p53 | 2020 |
6 other study(ies) available for sorafenib and cysteine
Article | Year |
---|---|
Regulation of cell death receptor S-nitrosylation and apoptotic signaling by Sorafenib in hepatoblastoma cells.
Topics: Antineoplastic Agents; Caspase 3; Caspase 8; Caspase 9; Cell Death; Cysteine; Gene Expression Regulation, Neoplastic; Hep G2 Cells; Humans; Niacinamide; Nitric Oxide; Nitric Oxide Donors; Nitric Oxide Synthase Type III; Phenylurea Compounds; Receptors, TNF-Related Apoptosis-Inducing Ligand; Receptors, Tumor Necrosis Factor, Type I; S-Nitrosothiols; Signal Transduction; Sorafenib | 2015 |
Metallothionein-1 as a biomarker of altered redox metabolism in hepatocellular carcinoma cells exposed to sorafenib.
Topics: Antineoplastic Agents; Biomarkers; Carcinoma, Hepatocellular; Cell Line, Tumor; Cysteine; Gene Expression Regulation, Neoplastic; Humans; Liver Neoplasms; Metallothionein; NF-E2-Related Factor 2; Niacinamide; Oxidation-Reduction; Oxidative Stress; Phenylurea Compounds; Prognosis; Promoter Regions, Genetic; Protein Kinase Inhibitors; Sorafenib; Transcription, Genetic | 2016 |
HNF4α regulates sulfur amino acid metabolism and confers sensitivity to methionine restriction in liver cancer.
Topics: Animals; Biomarkers, Tumor; Cell Line, Tumor; Cell Movement; Cysteine; Drug Resistance, Neoplasm; Epithelial-Mesenchymal Transition; Female; Gene Expression Regulation, Neoplastic; Hepatocyte Nuclear Factor 4; Liver; Liver Neoplasms; Mesoderm; Metabolic Networks and Pathways; Metabolome; Methionine; Mice; Sorafenib; Transcription, Genetic | 2020 |
Sorafenib induces mitochondrial dysfunction and exhibits synergistic effect with cysteine depletion by promoting HCC cells ferroptosis.
Topics: Antineoplastic Agents; Carcinoma, Hepatocellular; Cell Line, Tumor; Cysteine; Ferroptosis; Glutathione; Humans; Liver Neoplasms; Mitochondria; Reactive Oxygen Species; Sorafenib | 2021 |
Macropinocytosis is an alternative pathway of cysteine acquisition and mitigates sorafenib-induced ferroptosis in hepatocellular carcinoma.
Topics: Animals; Carcinoma, Hepatocellular; Cysteine; Female; Ferroptosis; Humans; Liver Neoplasms; Male; Mice; Pinocytosis; Protein Kinase Inhibitors; Sorafenib | 2022 |
S-palmitoylation of PCSK9 induces sorafenib resistance in liver cancer by activating the PI3K/AKT pathway.
Topics: Carcinoma, Hepatocellular; Cell Line, Tumor; Cysteine; Drug Resistance, Neoplasm; Hep G2 Cells; Humans; Lipoylation; Liver Neoplasms; Niacinamide; Phenylurea Compounds; Phosphatidylinositol 3-Kinases; Proprotein Convertase 9; Proto-Oncogene Proteins c-akt; Sorafenib | 2022 |