Page last updated: 2024-09-05

sorafenib and celecoxib

sorafenib has been researched along with celecoxib in 12 studies

Compound Research Comparison

Studies
(sorafenib)
Trials
(sorafenib)
Recent Studies (post-2010)
(sorafenib)
Studies
(celecoxib)
Trials
(celecoxib)
Recent Studies (post-2010) (celecoxib)
6,5207305,2515,2738432,428

Protein Interaction Comparison

ProteinTaxonomysorafenib (IC50)celecoxib (IC50)
Chain A, Carbonic anhydrase IIHomo sapiens (human)0.021
Prostaglandin E synthaseHomo sapiens (human)0.4825
Histone deacetylase 3Homo sapiens (human)1.637
Prostaglandin G/H synthase 1 Bos taurus (cattle)7.9667
Prostaglandin G/H synthase 2 Bos taurus (cattle)0.057
Cytochrome c oxidase subunit 1Ovis aries (sheep)6.5
Cytochrome c oxidase subunit 2Ovis aries (sheep)0.0881
Catechol O-methyltransferaseMus musculus (house mouse)0.036
Cytochrome c oxidase subunit 2Homo sapiens (human)0.371
Carbonic anhydrase 1Homo sapiens (human)0.1555
Carbonic anhydrase 2Homo sapiens (human)0.0925
Prostaglandin G/H synthase 1Ovis aries (sheep)5.271
Procathepsin LHomo sapiens (human)0.56
Aldo-keto reductase family 1 member B1Rattus norvegicus (Norway rat)7.308
Seed linoleate 13S-lipoxygenase-1Glycine max (soybean)0.07
Polyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)4.295
Cytochrome P450 2D6Homo sapiens (human)1
Cytochrome P450 2C9 Homo sapiens (human)10
Calpain-2 catalytic subunitHomo sapiens (human)0.002
Alpha-2B adrenergic receptorHomo sapiens (human)1.516
5-hydroxytryptamine receptor 1ARattus norvegicus (Norway rat)0.12
Prostaglandin G/H synthase 1Mus musculus (house mouse)3.6401
Prostaglandin G/H synthase 1Homo sapiens (human)3.5499
Sodium-dependent noradrenaline transporter Homo sapiens (human)7.308
Indoleamine 2,3-dioxygenase 1Mus musculus (house mouse)0.006
Sodium-dependent serotonin transporterHomo sapiens (human)6.276
Prostaglandin G/H synthase 2Homo sapiens (human)0.3818
Prostaglandin G/H synthase 2 Rattus norvegicus (Norway rat)0.4028
Urotensin-2 receptorRattus norvegicus (Norway rat)7.6
Histone deacetylase 4Homo sapiens (human)1.637
D(2) dopamine receptorRattus norvegicus (Norway rat)0.03
Prostaglandin G/H synthase 2Ovis aries (sheep)0.6343
Mu-type opioid receptorCavia porcellus (domestic guinea pig)7.7
Sodium-dependent dopamine transporter Homo sapiens (human)2.431
Prostaglandin G/H synthase 2Mus musculus (house mouse)0.045
Histone deacetylase 1Homo sapiens (human)1.411
Mitogen-activated protein kinase 14Homo sapiens (human)0.81
Carbonic anhydrase 9Homo sapiens (human)0.016
Sigma intracellular receptor 2Rattus norvegicus (Norway rat)0.05
Prostaglandin G/H synthase 1 Rattus norvegicus (Norway rat)0.3
Prostaglandin G/H synthase 1Canis lupus familiaris (dog)5.57
Cyclooxygenase-2 Canis lupus familiaris (dog)0.9
Histone deacetylase 7Homo sapiens (human)1.637
Histone deacetylase 2Homo sapiens (human)1.637
Carbonic anhydrase 4Bos taurus (cattle)0.2227
Polyamine deacetylase HDAC10Homo sapiens (human)1.637
Histone deacetylase 11 Homo sapiens (human)1.637
Histone deacetylase 8Homo sapiens (human)1.637
P2Y purinoceptor 12Rattus norvegicus (Norway rat)0.04
Histone deacetylase 6Homo sapiens (human)1.14
Histone deacetylase 9Homo sapiens (human)1.637
Histone deacetylase 5Homo sapiens (human)1.637

Research

Studies (12)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's0 (0.00)29.6817
2010's9 (75.00)24.3611
2020's3 (25.00)2.80

Authors

AuthorsStudies
Davis, MI; Khan, J; Li, SQ; Patel, PR; Shen, M; Sun, H; Thomas, CJ1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1
Akber Ansari, S; Arote, R; Chhajed, S; Pathan, SK; Patil, R; Sangshetti, J; Shinde, DB1
Bai, R; Jiang, X; Wu, K; Zhang, P; Zhang, Y1
Katano, M; Kiyota, A; Koya, N; Morisaki, T; Onishi, H; Tanaka, H; Umebayashi, M1
Azzolina, A; Bachvarov, D; Cervello, M; Cusimano, A; Lampiasi, N; McCubrey, JA; Montalto, G1
Li, Z; Wang, K; Zhang, H1
Booth, L; Carter, J; Dent, P; McGuire, WP; Poklepovic, A; Roberts, JL; Webb, T1
Brossart, P; Diehl, L; Garbi, N; Gevensleben, H; Grünwald, B; Heine, A; Held, SA; Höchst, B; Knolle, P; Krüger, A; Kurts, C; Schilling, J1
Benech, N; Saurin, JC; Walter, T1
Davis, JT; Keskinyan, VS; Mater, DV; Robles, J; Thompson, M1
Franco, PIG; Li, RK; Pandy, JGP1

Reviews

4 review(s) available for sorafenib and celecoxib

ArticleYear
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016
Synthesis and biological activity of structurally diverse phthalazine derivatives: A systematic review.
    Bioorganic & medicinal chemistry, 2019, 09-15, Volume: 27, Issue:18

    Topics: Humans; Phthalazines

2019
Functionalized quinoxalinones as privileged structures with broad-ranging pharmacological activities.
    European journal of medicinal chemistry, 2022, Feb-05, Volume: 229

    Topics: Animals; Anti-Allergic Agents; Anti-Bacterial Agents; Anti-Infective Agents; Anti-Inflammatory Agents; Antineoplastic Agents; Antioxidants; Antiviral Agents; Drug Development; Heterocyclic Compounds; Humans; Hypoglycemic Agents; Mice; Neuroprotective Agents; Photochemotherapy; Quinoxalines; Structure-Activity Relationship; Tubulin Modulators

2022
Prophylactic strategies for hand-foot syndrome/skin reaction associated with systemic cancer treatment: a meta-analysis of randomized controlled trials.
    Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer, 2022, Volume: 30, Issue:11

    Topics: Capecitabine; Celecoxib; Hand-Foot Syndrome; Humans; Neoplasms; Pyridoxine; Randomized Controlled Trials as Topic; Sorafenib

2022

Other Studies

8 other study(ies) available for sorafenib and celecoxib

ArticleYear
Identification of potent Yes1 kinase inhibitors using a library screening approach.
    Bioorganic & medicinal chemistry letters, 2013, Aug-01, Volume: 23, Issue:15

    Topics: Binding Sites; Cell Line; Cell Survival; Drug Design; Humans; Hydrogen Bonding; Molecular Docking Simulation; Protein Kinase Inhibitors; Protein Structure, Tertiary; Proto-Oncogene Proteins c-yes; Small Molecule Libraries; Structure-Activity Relationship

2013
Combining celecoxib with sorafenib synergistically inhibits hepatocellular carcinoma cells in vitro.
    Anticancer research, 2013, Volume: 33, Issue:4

    Topics: Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Blotting, Western; Carcinoma, Hepatocellular; Celecoxib; Cell Proliferation; Dinoprostone; Drug Synergism; Fluorescent Antibody Technique; Humans; In Vitro Techniques; Liver Neoplasms; Niacinamide; Phenylurea Compounds; Phosphorylation; Proto-Oncogene Proteins c-akt; Pyrazoles; Sorafenib; Sulfonamides; Tumor Cells, Cultured

2013
Novel combination of sorafenib and celecoxib provides synergistic anti-proliferative and pro-apoptotic effects in human liver cancer cells.
    PloS one, 2013, Volume: 8, Issue:6

    Topics: Apoptosis; Blotting, Western; Carcinoma, Hepatocellular; Celecoxib; Cell Line, Tumor; Cell Proliferation; DNA Primers; Drug Synergism; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Humans; In Situ Nick-End Labeling; Liver Neoplasms; Microarray Analysis; Niacinamide; Phenylurea Compounds; Pyrazoles; Reverse Transcriptase Polymerase Chain Reaction; Signal Transduction; Sorafenib; Sulfonamides

2013
Combining sorafenib with celecoxib synergistically inhibits tumor growth of non-small cell lung cancer cells in vitro and in vivo.
    Oncology reports, 2014, Volume: 31, Issue:4

    Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Blotting, Western; Carcinoma, Non-Small-Cell Lung; Celecoxib; Cell Line, Tumor; Cell Proliferation; Drug Synergism; Female; Humans; Lung Neoplasms; Mice; Mice, Inbred BALB C; Niacinamide; Phenylurea Compounds; Pyrazoles; Sorafenib; Sulfonamides; Xenograft Model Antitumor Assays

2014
Celecoxib enhances [sorafenib + sildenafil] lethality in cancer cells and reverts platinum chemotherapy resistance.
    Cancer biology & therapy, 2015, Volume: 16, Issue:11

    Topics: Antineoplastic Agents; Carboplatin; Celecoxib; Cell Line, Tumor; Cell Survival; Cisplatin; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Drug Synergism; Endoplasmic Reticulum Chaperone BiP; Female; Humans; Inhibitory Concentration 50; Niacinamide; Organoplatinum Compounds; Ovarian Neoplasms; Oxaliplatin; Phenylurea Compounds; Sildenafil Citrate; Sorafenib

2015
The induction of human myeloid derived suppressor cells through hepatic stellate cells is dose-dependently inhibited by the tyrosine kinase inhibitors nilotinib, dasatinib and sorafenib, but not sunitinib.
    Cancer immunology, immunotherapy : CII, 2016, Volume: 65, Issue:3

    Topics: Celecoxib; Cell Differentiation; Cells, Cultured; Dasatinib; Dose-Response Relationship, Drug; Hepatic Stellate Cells; Humans; Immune Tolerance; Indoles; Monocytes; Myeloid Cells; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Pyrimidines; Pyrroles; Sorafenib; Sunitinib

2016
Desmoid Tumors and Celecoxib with Sorafenib.
    The New England journal of medicine, 2017, 06-29, Volume: 376, Issue:26

    Topics: Adenomatous Polyposis Coli; Adult; Antineoplastic Combined Chemotherapy Protocols; Celecoxib; Female; Fibromatosis, Aggressive; Humans; Magnetic Resonance Imaging; Middle Aged; Neoplasm Recurrence, Local; Niacinamide; Phenylurea Compounds; Sorafenib; Tomography, X-Ray Computed

2017
Combination therapy with sorafenib and celecoxib for pediatric patients with desmoid tumor.
    Pediatric hematology and oncology, 2020, Volume: 37, Issue:5

    Topics: Adolescent; Anti-Inflammatory Agents, Non-Steroidal; Antineoplastic Combined Chemotherapy Protocols; Celecoxib; Child; Cyclooxygenase 2; Fibromatosis, Aggressive; Humans; Magnetic Resonance Imaging; Male; Protein Kinase Inhibitors; Receptors, Platelet-Derived Growth Factor; Risk Factors; Sorafenib; Treatment Outcome

2020