sophorol and isoflavanone

sophorol has been researched along with isoflavanone* in 1 studies

Other Studies

1 other study(ies) available for sophorol and isoflavanone

ArticleYear
Studies on the late steps of (+) pisatin biosynthesis: evidence for (-) enantiomeric intermediates.
    Phytochemistry, 2006, Volume: 67, Issue:7

    Pisatin, a 6a-hydroxyl-pterocarpan phytoalexin from pea (Pisum sativum L.), is relatively unique among naturally occurring pterocarpans by virtue of the (+) stereochemistry of its 6a-11a C-C bond. However, pisatin synthesizing pea tissue has an isoflavone reductase, first identified in alfalfa, which acts on the (-) antipode. In order to establish the natural biosynthetic pathway to (+) pisatin, and to evaluate the possible involvement of intermediates with a (-) chirality in its biosynthesis, we administered chiral, tritium-labeled, isoflavanones and pterocarpans to pisatin-synthesizing pea cotyledons and compared the efficiency of their incorporation. Pea incorporated the isoflavanone, (-) sophorol, more efficiently than either its (+) antipode, or the pterocarpans (+) or (-) maackiain. (-) Sophorol was also metabolized by protein extracts from pisatin-synthesizing pea seedlings in a NADPH-dependent manner. Three products were produced. One was the isoflavene (7,2'-dihydroxy-4',5'-methylenedioxyisoflav-3-ene), and another had properties consistent with the isoflavanol (7,2'-dihydroxy-4',5'-methylenedioxyisoflavanol), the expected product for an isoflavanone reductase. A cDNA encoding sophorol reductase was also isolated from a cDNA library made from pisatin-synthesizing pea. The cloned recombinant sophorol reductase preferred (-) sophorol over (+) sophorol as a substrate and produced 7,2'-dihydroxy-4',5'-methylenedioxyisoflavanol. Although no other intermediates in (+) pisatin biosynthesis were identified, the results lend additional support to the involvement of intermediates of (-) chirality in (+) pisatin synthesis.

    Topics: Amino Acid Sequence; Antiprotozoal Agents; Cloning, Molecular; Cotyledon; DNA, Complementary; Isoflavones; Molecular Sequence Data; NADP; Oxidoreductases; Pisum sativum; Plant Extracts; Pterocarpans; Stereoisomerism; Time Factors

2006