sodium-propionate has been researched along with beta-hydroxyvaleric-acid* in 2 studies
2 other study(ies) available for sodium-propionate and beta-hydroxyvaleric-acid
Article | Year |
---|---|
Enhancing the 3-hydroxyvalerate component in bioplastic PHBV production by Cupriavidus necator.
In the current context of global warming, the substitution of conventional plastics with bioplastics is a challenge. To take up this challenge, we must meet different technical and economic constraints. In the case of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), the technical properties can be modulated by varying the 3-hydroxyvalerate content. 3-Hydroxyvalerate (3-HV) enhancement is an issue; therefore, simultaneous evaluation of several 3-hydroxyvalerate-enhancing substrates through fractional factorial design of experiments is described. Eight substrates citric, valeric, propionic, and levulinic acids; propanol; pentanol; and sodium propionate were studied for 3-HV enhancement, and sodium glutamate was studied for biomass and polyhydroxyalkanoate (PHA) enhancement. The most efficient 3-hydroxyvalerate-enhancing factors were levulinic acid, sodium propionate, and pentanol; however, pentanol, at a concentration of 1 g/L, had an extremely negative influence on biomass production and the PHA content of cells. The effect of the inoculum nutrient composition on the final 3-HVcontent was also evaluated. These results showed that the most efficient combination for the production of high 3-HVcontent in PHBV was primary inoculum growth on mineral medium followed by fermentation for 48 h with levulinic acid and sodium propionate (at 1 g/L) as the only carbon sources. This allowed us to produce PHBV with a 3-HVcontent of 80 mol % and overall volumetric and specific productivities of 2 mg/L/h and 3.9 mg/g(CDW) /h, respectively, with the addition of only 2 g/L of inducing substances. Topics: Biomass; Bioreactors; Cupriavidus necator; Levulinic Acids; Pentanoic Acids; Pentanols; Polyesters; Propionates | 2012 |
Effects of different substrate composition on biosynthesis of polyhydroxybutyrate-co-hydroxyvalerate by recombinant Escherichia coli.
Cupriavidus necator is well known for its ability to accumulate polyhydroxybutyrate (PHB). When supplemented with propionic acid (or sodium propionate) in the growth medium, the bacterium is also able to synthesize polyhydroxybutyrate-co-hydroxyvalerate (PHBV). In order to increase the fraction of 3-hydroxyvalerate (3HV) in PHBV, we cloned the propionate permease gene prpP from C. necator and the propionyl-CoA synthase gene prpE from Cupriavidus taiwanensis and transformed into an Escherichia coli containing phaCAB operon of C. necator. The effects on PHBV accumulation in cells co-expressed with phaCAB and prpE or prpP in the media contained mixed carbon sources (glucose and sodium propionate) were evaluated. The HV fraction in PHBV increased when prpE or prpP was overexpressed in the cells. Concentrations of yeast extracts could also affect the fraction of HV. In addition, when glucose was replaced by sodium pyruvate, sodium succinate, or sodium gluconate, only PHB were detected in the recombinant strains. Topics: Bacterial Proteins; Cloning, Molecular; Coenzyme A Ligases; Cupriavidus; Cupriavidus necator; Escherichia coli; Gene Expression; Glucose; Hydroxybutyrates; Membrane Transport Proteins; Operon; Pentanoic Acids; Polyesters; Propionates; Protein Engineering; Recombinant Proteins | 2012 |