sodium-propionate and 2-methylcitric-acid

sodium-propionate has been researched along with 2-methylcitric-acid* in 2 studies

Other Studies

2 other study(ies) available for sodium-propionate and 2-methylcitric-acid

ArticleYear
Biochemical and anaplerotic applications of in vitro models of propionic acidemia and methylmalonic acidemia using patient-derived primary hepatocytes.
    Molecular genetics and metabolism, 2020, Volume: 130, Issue:3

    Propionic acidemia (PA) and methylmalonic acidemia (MMA) are autosomal recessive disorders of propionyl-CoA (P-CoA) catabolism, which are caused by a deficiency in the enzyme propionyl-CoA carboxylase or the enzyme methylmalonyl-CoA (MM-CoA) mutase, respectively. The functional consequence of PA or MMA is the inability to catabolize P-CoA to MM-CoA or MM-CoA to succinyl-CoA, resulting in the accumulation of P-CoA and other metabolic intermediates, such as propionylcarnitine (C3), 3-hydroxypropionic acid, methylcitric acid (MCA), and methylmalonic acid (only in MMA). P-CoA and its metabolic intermediates, at high concentrations found in PA and MMA, inhibit enzymes in the first steps of the urea cycle as well as enzymes in the tricarboxylic acid (TCA) cycle, causing a reduction in mitochondrial energy production. We previously showed that metabolic defects of PA could be recapitulated using PA patient-derived primary hepatocytes in a novel organotypic system. Here, we sought to investigate whether treatment of normal human primary hepatocytes with propionate would recapitulate some of the biochemical features of PA and MMA in the same platform. We found that high levels of propionate resulted in high levels of intracellular P-CoA in normal hepatocytes. Analysis of TCA cycle intermediates by GC-MS/MS indicated that propionate may inhibit enzymes of the TCA cycle as shown in PA, but is also incorporated in the TCA cycle, which does not occur in PA. To better recapitulate the disease phenotype, we obtained hepatocytes derived from livers of PA and MMA patients. We characterized the PA and MMA donors by measuring key proximal biomarkers, including P-CoA, MM-CoA, as well as clinical biomarkers propionylcarnitine-to-acetylcarnitine ratios (C3/C2), MCA, and methylmalonic acid. Additionally, we used isotopically-labeled amino acids to investigate the contribution of relevant amino acids to production of P-CoA in models of metabolic stability or acute metabolic crisis. As observed clinically, we demonstrated that the isoleucine and valine catabolism pathways are the greatest sources of P-CoA in PA and MMA donor cells and that each donor showed differential sensitivity to isoleucine and valine. We also studied the effects of disodium citrate, an anaplerotic therapy, which resulted in a significant increase in the absolute concentration of TCA cycle intermediates, which is in agreement with the benefit observed clinically. Our human cell-based PA and MMA disease model

    Topics: Amino Acid Metabolism, Inborn Errors; Amino Acids; Case-Control Studies; Cells, Cultured; Citrates; Citric Acid; Citric Acid Cycle; Hepatocytes; Humans; In Vitro Techniques; Methylmalonic Acid; Methylmalonyl-CoA Decarboxylase; Methylmalonyl-CoA Mutase; Propionates; Propionic Acidemia

2020
Propionic acid metabolism and poly-3-hydroxybutyrate-co-3-hydroxyvalerate production by a prpC mutant of Herbaspirillum seropedicae Z69.
    Journal of biotechnology, 2018, Nov-20, Volume: 286

    Polyhydroxyalkanoates (PHAs) are thermoplastic polyesters produced by a wide range of bacteria as carbon and energy reserves. PHA accumulation is typically increased under unbalanced growth conditions and with carbon source in excess. Although polyhydroxybutyrate (PHB) could be used for specific applications, it is brittle and not a useful alternative for plastics like polypropylene. Far more useful polypropylene-like PHAs, are copolymers composed of 3-hydroxybutyrate and 3-hydroxyvalerate, P(3HB-co-3HV). Propionic acid is one of the carbon sources that can be used to generate 3HV. A mutant derived from Herbaspirillum seropedicae Z69, a strain previously described as capable of producing P(3HB-co-3HV) from propionic acid, was constructed to increase 3HV biosynthetic efficiency. The strategy involved elimination of a catabolic route for propionyl-CoA by deficiency marker exchange of a selected gene. The mutant (Z69Prp) was constructed by elimination of the 2-methylcitrate synthase (PrpC) gene of the 2-methylcitrate cycle for propionate catabolism. Strain Z69Prp was unable to grow on sodium propionate, but in cultures with glucose-propionate accumulated 50% of its dry weight as copolymer. Z69Prp had 14.1 mol% 3HV; greater than that of strain Z69 (2.89 mol%). The 3HV yield from propionic acid (Y

    Topics: Bacterial Proteins; Biosynthetic Pathways; Citrates; Gene Knockout Techniques; Glucose; Herbaspirillum; Mutation; Oxo-Acid-Lyases; Polyesters; Propionates

2018