sodium-dodecyl-sulfate has been researched along with titanium-dioxide* in 15 studies
15 other study(ies) available for sodium-dodecyl-sulfate and titanium-dioxide
Article | Year |
---|---|
Separation and size characterization of highly polydisperse titanium dioxide nanoparticles (E171) in powdered beverages by using Asymmetric Flow Field-Flow Fractionation hyphenated with Multi-Angle Light Scattering and Inductively Coupled Plasma Mass Spec
The application of titanium dioxide as E171 food additive has become an issue of debate due to numerous reports that titanium dioxide nanoparticles (TiO Topics: Beverages; Dynamic Light Scattering; Fractionation, Field Flow; Humans; Mass Spectrometry; Metal Nanoparticles; Particle Size; Plasma; Powders; Sodium Dodecyl Sulfate; Titanium | 2021 |
Adsorption of phenol molecules by sodium dodecyl sulfate (SDS) surfactants deposited on solid surfaces: A computer simulation study.
Adsorption studies of phenol molecules on a sodium dodecyl sulfate (SDS) micelle were investigated by molecular dynamics simulations. Simulations were carried out in bulk and on three distinct solid surfaces, silicon dioxide, titanium dioxide and graphite. It was observed that different surfactant micellar shapes were formed on the surfaces. For the silicon dioxide and titanium dioxide surfaces the surfactants were adsorbed by their headgroups whereas for the graphite surface they were adsorbed mainly by their tail groups. It was found that the amount of phenol adsorbed on the SDS micelle was altered by the surfactant shape deposited on the solid surface. However, the best phenol adsorption was obtained by the surfactant modified silicon dioxide surface. Moreover, in all cases, from structural investigations, it was determined that the phenol molecules were located inside the surfactant micelle with their hydroxyl groups close to the SDS headgroups. Topics: Adsorption; Graphite; Micelles; Molecular Dynamics Simulation; Phenols; Silicon Dioxide; Sodium Dodecyl Sulfate; Surface Properties; Surface-Active Agents; Thermodynamics; Titanium; Wastewater; Water; Water Pollutants, Chemical; Water Purification | 2016 |
Photocatalytic degradation and reactor modeling of 17α-ethynylestradiol employing titanium dioxide-incorporated foam concrete.
Photocatalytic degradation of 17α-ethynylestradiol (EE2) using TiO2 photocatalysts incorporated with foam concrete (TiO2/FC) was investigated for the first time. Scanning electron microscopy (SEM) study of the samples revealed a narrow air void size distribution on the surface of FC cubes on with 5 wt% addition of P25 TiO2, and TiO2 particles were distributed heterogeneously on the surface of TiO2/FC samples. The sorption and photocatalytic degradation of EE2 with UV-light irradiation by TiO2/FC cubes were investigated. Adsorption capacity of EE2 by the TiO2/FC and blank foam concrete (FC) samples were similar, while the degradation rates showed a great difference. More than 50 % of EE2 was removed by TiO2/FC within 3.5 h, compared with 5 % by blank FC. The EE2 removal process was then studied in a photoreactor modified from ultraviolet disinfection pool and constructed with TiO2/FC materials. An integrated model including a plate adsorption-scattering model and a modified flow diffusion model was established to simulate the photocatalytic degradation process with different radiation fields, contaminant load, and flow velocity. A satisfactory agreement was observed between the model simulations and experimental results, showing a potential for the design and scale-up of the modified photocatalytic reactor. Topics: Catalysis; Coal Ash; Ethinyl Estradiol; Manufactured Materials; Models, Theoretical; Oxidation-Reduction; Particle Size; Photochemical Processes; Sodium Dodecyl Sulfate; Titanium; Ultraviolet Rays; Water Pollutants, Chemical; Water Purification; Water Quality | 2015 |
Hydrotalcite-TiO2 magnetic iron oxide intercalated with the anionic surfactant dodecylsulfate in the photocatalytic degradation of methylene blue dye.
The new magnetic photocatalysts HT/TiO2/Fe and HT-DS/TiO2/Fe, modified with the anionic surfactant sodium dodecylsulfate (DS) were successfully synthesized in this work. Titanium dioxide (anatase) followed by iron oxide were deposited on the hydrotalcite support. Several catalyst samples were prepared with different amounts of titanium and iron. The photocatalysts were characterized by infrared and Raman spectroscopy, X-ray diffraction, scanning electron microscopy. Photocatalytic performance was analyzed by UV-visible radiation (filter cutoff, λ > 300 nm) of an aqueous solution (24 mg/L) of methylene blue (MB). The most efficient catalyst was obtained at an iron oxide:TiO2 molar ratio of 2:3. This catalyst showed high photocatalytic activity, removing 96% of the color and 61% of total organic carbon from the MB solution after 120 min. It was easily removed from solution after use because of its magnetic properties. The reuse of the HT-DS/TiO2/Fe23 catalyst was viable and the catalyst was structurally stable for at least four consecutive photocatalytic cycles. Topics: Aluminum Hydroxide; Catalysis; Ferric Compounds; Magnesium Hydroxide; Methylene Blue; Microscopy, Electron, Scanning; Photochemistry; Sodium Dodecyl Sulfate; Surface-Active Agents; Titanium; Water Purification; X-Ray Diffraction | 2015 |
Penetration of titanium dioxide nanoparticles through slightly damaged skin in vitro and in vivo.
Titanium dioxide nanoparticles (TiO2-NPs) have been widely developed for versatile use, but the potential risk form their skin exposure is still unclear. To evaluate this risk, the skin penetration of TiO2-NPs is necessary to be understood first. The aims of this study are to investigated the penetration of TiO2-NPs through slightly damaged skin and intact skin in vitro and in vivo.. TiO2-NPs with a diameter of 20 nm was labeled with 125I.The skin of rat was treated with 2% SLS solution and obtained as slightly damaged skin. The 125I labeled TiO2-NPs (125I-TiO2-NPs)solution and 0.9% PS solution were added into the donor chamber and receptor chamber of static diffusion cells which clamped the skin at the middle of two half-cells, respectively. During 24 hours, samples were extracted from the receptor chamber and counted for 1 min using γ-counter to detect the radioactivity. The skin penetration of TiO2-NPs in vitro was expressed as the percentage of radioactivity of receptor chamber solution compared with total radioactivity in the donor chamber. Thereafter, the 125I-TiO2-NPs was exposed to the rats. After 1 day and 3 days, the blood and tissues of rats were harvested, weighed and counted for 1 min using γ-counter to detect the tissue radioactivity. The skin penetration of TiO2-NPs in vivo was expressed as the percentage dose per gram tissue (% dose/g).. In the skin penetration experiment in vitro, the radioactivity of receptor chamber solution through damaged skin was higher than that of through intact skin and was about 2% radioactivity of donor chamber on 24 h. In the skin penetration experiment in vivo, the radioactivity of blood and tissues of rats after exposing to 125I-TiO2-NPs solution though damaged skin or intact skin were less than 0.05% dose/g on 1 d and quickly declined on 3 d. The skin penetration rates of TiO2-NPs through slightly damaged skin and intact skin in vitro and vivo were lower than the rate of free 125I in the TiO2-NPs solution.. The TiO2-NPs could not penetrate through the damaged skin or intact skin both in vitro and in vivo. It suggested that the TiO2-NPs should be safe when it was applied and contacted with skin. Topics: Animals; Iodine Radioisotopes; Male; Metal Nanoparticles; Rats; Rats, Wistar; Skin; Sodium Dodecyl Sulfate; Titanium | 2015 |
Prospects and difficulties in TiO₂ nanoparticles analysis in cosmetic and food products using asymmetrical flow field-flow fractionation hyphenated to inductively coupled plasma mass spectrometry.
In this work, we proposed an analytical approach based on asymmetrical flow field-flow fractionation combined to an inductively coupled plasma mass spectrometry (AsFlFFF-ICP-MS) for rutile titanium dioxide nanoparticles (TiO2NPs) characterization and quantification in cosmetic and food products. AsFlFFF-ICP-MS separation of TiO2NPs was performed using 0.2% (w/v) SDS, 6% (v/v) methanol at pH 8.7 as the carrier solution. Two problems were addressed during TiO2NPs analysis by AsFlFFF-ICP-MS: size distribution determination and element quantification of the NPs. Two approaches were used for size determination: size calibration using polystyrene latex standards of known sizes and transmission electron microscopy (TEM). A method based on focused sonication for preparing NPs dispersions followed by an on-line external calibration strategy based on AsFlFFF-ICP-MS, using rutile TiO2NPs as standards is presented here for the first time. The developed method suppressed non-specific interactions between NPs and membrane, and overcame possible erroneous results obtained when quantification is performed by using ionic Ti solutions. The applicability of the quantification method was tested on cosmetic products (moisturizing cream). Regarding validation, at the 95% confidence level, no significant differences were detected between titanium concentrations in the moisturizing cream prior sample mineralization (3865±139 mg Ti/kg sample), by FIA-ICP-MS analysis prior NPs extraction (3770±24 mg Ti/kg sample), and after using the optimized on-line calibration approach (3699±145 mg Ti/kg sample). Besides the high Ti content found in the studied food products (sugar glass and coffee cream), TiO2NPs were not detected. Topics: Calibration; Cosmetics; Emollients; Food Analysis; Fractionation, Field Flow; Humans; Hydrogen-Ion Concentration; Mass Spectrometry; Metal Nanoparticles; Methanol; Microscopy, Electron, Transmission; Particle Size; Reproducibility of Results; Sodium Dodecyl Sulfate; Sunscreening Agents; Titanium | 2014 |
Extraction of Sudan dyes from environmental water by hemimicelles-based magnetic titanium dioxide nanoparticles.
A novel method for the extraction of Sudan dyes including Sudan I, II, III, and IV from environmental water by magnetic titanium dioxide nanoparticles (Fe3O4@TiO2) coated with sodium dodecylsulfate (SDS) as adsorbent was reported. Fe3O4@TiO2 was synthesized by a simple method and was characterized by transmission electron microscopy, Fourier-transform infrared spectrometry, and vibrating sample magnetometer. The magnetic separation was quite efficient for the adsorption and desorption of Sudan dyes. The effect of the amount of SDS, extraction time, pH, desorption condition, maximal extraction volume, and humic acid on the extraction process were investigated. This method was employed to analyze three environmental water samples. The results demonstrated that our proposed method had wide linear range (25-5,000 ng L(-1)) with a good linearity (R (2) > 0.999) and low detection limits (2.9-7.3 ng L(-1)). An enrichment factor of 1,000 was achieved. In all three spiked levels (25, 250, and 2,500 ng L(-1)), the recoveries of Sudan dyes were in the range of 86.9-93.6 %. The relative standard deviations obtained were ranging from 2.5 to 9.3 %. That is to say, the new method was fast and effective for the extraction of Sudan dye from environmental water. Topics: Adsorption; Chromatography, High Pressure Liquid; Coloring Agents; Environmental Monitoring; Fresh Water; Limit of Detection; Metal Nanoparticles; Microscopy, Electron, Transmission; Sodium Dodecyl Sulfate; Solid Phase Extraction; Spectroscopy, Fourier Transform Infrared; Titanium; Water Pollutants, Chemical | 2014 |
Adhesion of sodium dodecyl sulfate surfactant monolayers with TiO(2) (rutile and anatase) surfaces.
Surfactants are widely used as templates to control the nucleation and growth of nanostructured metal oxides such as titania. To gain insight into the origin of the surfactant-titania interactions responsible for polymorph and orientation selection, we simulate the self-assembly of an anionic surfactant monolayer on various low-index titania surfaces, for a range of densities. We characterize the binding in each case and compute the adhesion energies, finding anatase (100) and rutile (110) to be the strongest-binding surfaces. The sodium counterions in the monolayer are found to dominate the adhesion. It is also observed that the assembly is directed predominantly by surface-monolayer electrostatic complementarity. Incorporating water displacement into the calculations does not alter the general findings but does cause the adhesion energies to fall within a smaller range. Topics: Adsorption; Sodium Dodecyl Sulfate; Static Electricity; Surface Properties; Surface-Active Agents; Titanium | 2013 |
Enhancement of photocatalytic degradation of dimethyl phthalate with nano-TiO2 immobilized onto hydrophobic layered double hydroxides: a mechanism study.
The organic layered double hydroxides (LHDs)/TiO(2) composites with various mass ratios were prepared by the reconstruction of mixed metal oxides to photodegrade dimethyl phthalate (DMP). The physicochemical properties of the obtained products were analyzed by X-ray diffraction (XRD) spectra, X-ray photoelectron spectra (XPS), UV-vis diffuse reflectance spectroscope and scanning electron microscope (SEM). The results showed that the TiO(2) particles and the organic LDHs were combined together through chemical bonds, and TiO(2) particles were well distributed on the surface of the interconnecting organic LDHs nano-flakes. According to the experimental results of adsorptive and photodegradation of DMP, the organic LDHs with flaky structure could effectively adsorb the DMP molecules and the adsorption isotherm by the composites modeled well with the Langmuir equation. The enrichment of DMP onto the composites and the external hydroxyl groups of the composites produce a synergistic effect leading to greatly enhance the rate of DMP photocatalytic degradation by the obtained composites. Topics: Adsorption; Hydroxides; Microscopy, Electron, Scanning; Nanoparticles; Photoelectron Spectroscopy; Photolysis; Phthalic Acids; Sodium Dodecyl Sulfate; Titanium; Ultraviolet Rays; Water Pollutants, Chemical; X-Ray Diffraction | 2013 |
Highly ordered mesoporous TiO2-Fe2O3 mixed oxide synthesized by sol-gel pathway: an efficient and reusable heterogeneous catalyst for dehalogenation reaction.
Highly ordered two-dimensional (2D) hexagonal TiO(2)-Fe(2)O(3) mixed-oxide material MFT-1, which is composed of very tiny nanoparticles, is synthesized using sodium dodecylsulfate (SDS) as a structure-directing agent. Interestingly, synthesis of an ordered mesophase was not possible using SDS as a template for mesoporous pure Fe(2)O(3) or TiO(2) phases. This mesoporous iron-titanium mixed-oxide material has been characterized by powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), N(2) sorption, ultraviolet-visible light diffuse reflectance spectroscopy (UV-vis DRS) studies. N(2) sorption analysis revealed high surface areas (126-385 m(2) g(-1)) and narrow pore size distributions (3.1-3.4 nm) for different samples. UV-vis DRS spectra and wide-angle powder XRD patterns indicate that the material is composed of α-Fe(2)O(3) and anatase TiO(2) phases. This TiO(2)-Fe(2)O(3) mixed-oxide material can act as a very efficient and reusable catalyst in the dehalogenation of aromatic chloride-, bromide-, and iodide-tolerating -F, -CN, -CH(3), -OCH(3) and -NO(2) functional groups in the aromatic ring using 2-propanol as the dispersion medium. Topics: Adsorption; Catalysis; Ferric Compounds; Gels; Halogenation; Nanoparticles; Nitrogen; Porosity; Sodium Dodecyl Sulfate; Titanium | 2012 |
Liquid phase deposition of hemoglobin/SDS/TiO2 hybrid film preserving photoelectrochemical activity.
This work demonstrates that liquid phase deposition (LPD) technique provides a novel approach to the immobilization of hemoglobin (Hb) in TiO(2) film for studying the direct electron transfer of Hb. Using the LPD process, a hybrid film composed of Hb, TiO(2) and sodium dodecylsulfonate (SDS) is successfully prepared on the electrode surface. The surface morphology of as-deposited Hb/SDS/TiO(2) film shows a flower-like structure. The cyclic voltammetric measurement indicates that the LPD hybrid film facilitates the electron transfer of Hb, which yields a pair of redox peaks prior to the characteristic voltammetric peaks of TiO(2). Due to the electrocatalytic activity of Hb towards H(2)O(2), the Hb/SDS/TiO(2) hybrid LPD film can be utilized as an H(2)O(2) sensor, showing a sensitive response linearly proportional to the concentration of H(2)O(2) in the range of 5.0×10(-7)-4.0×10(-5) mol/L. At the same time, the Hb/SDS/TiO(2) hybrid film preserves the photoelectrochemical activity of TiO(2). The photovoltaic effect on the electrochemical behavior of Hb/SDS/TiO(2) film is observed after long-time UV irradiation on the film, which could improve the calibration sensitivity for H(2)O(2). Topics: Electric Conductivity; Electrochemistry; Electrodes; Electroplating; Hemoglobins; Hydrogen Peroxide; Immobilized Proteins; Kinetics; Oxidation-Reduction; Quartz; Sodium Dodecyl Sulfate; Spectrophotometry; Titanium; Ultraviolet Rays | 2011 |
Computational studies on the behavior of sodium dodecyl sulfate (SDS) at TiO2(rutile)/water interfaces.
Molecular dynamics simulations to study the behavior of an anionic surfactant close to TiO(2) surfaces were carried out where each surface was modeled using three different crystallographic orientations of TiO(2) (rutile), (001), (100) and (110). Even though all three surfaces were made with the same atoms the orientation was a key to determine adsorption since surfactant molecules aggregated in different ways. For instance, simulations on the surface (100) showed that the surfactant molecules formed a hemicylinder structure whereas the molecules on the surface (110) were attached to the solid by forming a hemisphere-like structure. Structure of the aggregated molecules and surfactant adsorption on the surfaces were studied in terms of tails and headgroups density profiles as well as surface coverage. From density profiles and angular distributions of the hydrocarbon chains it was possible to determine the influence of the solid surface. For instance, on surfaces (100) and (001) the surfactant molecules formed molecular layers parallel to the surface. Finally, it was found that in the solids (100) and (110) where there are oxygen atoms exposed on the surface the surfactant molecules were attached to the surfaces along the sites between the lines of these oxygen atoms. Topics: Adsorption; Molecular Dynamics Simulation; Sodium Dodecyl Sulfate; Surface-Active Agents; Titanium; Water | 2011 |
Photodegradation of surfactants on the nanosized TiO2 prepared by hydrolysis of the alkoxide titanium.
Nanosized TiO(2) was synthesized by hydrolysis of titanium tetraisopropoxide in the nanodroplets of microemulsions. The microemulsion provided by functionalized surfactants derived from the mixture of the commercially available sodium dodecylbenzensulfonate (DBS) and sodium dodecyl sulfate (DS). The resulting TiO(2) nanoparticles were characterized by transmission electron microscopy, X-ray diffraction, and differential thermal analysis. Nanosized TiO(2) of anatase was found to show good photocatalytic properties in the photodegradation of DBS and DS surfactants. The cleavage of the aromatic moiety, the intermediate products and ultimate mineralization to CO(2) were examined in the process of photodegradation. A mechanism is also proposed on the basis of these experimental results. Topics: Benzenesulfonates; Differential Thermal Analysis; Emulsions; Hydrolysis; Kinetics; Light; Microscopy, Electron; Organometallic Compounds; Particle Size; Sodium Dodecyl Sulfate; Surface-Active Agents; Titanium; X-Ray Diffraction | 2004 |
Interaction of sodium polyacrylate adsorbed on TiO2 with cationic and anionic surfactants.
Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) was used to identify the structures formed during the adsorption of sodium polyacrylate (NaPA) on charged TiO2 particles and to determine the subsequent interaction of the adsorbed polymer structure with cationic and anionic surfactants. The nature of the polymer structure was deduced from the adsorbed amount in tandem with the information obtained from monitoring the change in the relative intensity of the COO- and COOH infrared bands. In particular, it is found that the relative number of COO- and COOH groups on the polymer backbone for the adsorbed state differs from that of the same polymer in solution. This difference is due to a shift in the population of COO-/COOH groups on the polymer backbone that arises when the COO- groups bind to positively charged sites on the surface. A change in the number COO-/COOH groups on the polymer is thus related to a change in the bound fraction of polymer. It is shown that the initial NaPA approaching the bare surface adopts a flat conformation with high bound fraction. Once the bare sites on the surface are covered, the accommodation of additional polymer on the surface requires the existing adsorbed layer to adopt a conformation with a lower bound fraction. When the adsorbed NaPA is probed with a solution containing the anionic surfactant sodium dodecyl sulfate (SDS), the SDS competes for surface sites and displaces some of the bound NaPA segments from the surface, giving rise to an polymer layer adsorbed with an even lower bound fraction. In contrast, addition of a solution containing the cationic surfactant cetyltrimethylammonium bromide (CTAB) results in the binding of the surfactant directly to the free COO- sites on the adsorbed polymer backbone. Confirmation of a direct interaction of the CTAB headgroup with the free COO- groups of the polymer is provided by intensity changes in the headgroup IR bands of the CTAB. Topics: Acrylic Resins; Adsorption; Anions; Cations; Cetrimonium; Cetrimonium Compounds; Hydrogen-Ion Concentration; Sodium Dodecyl Sulfate; Surface Properties; Surface-Active Agents; Time Factors; Titanium | 2004 |
TiO2-promoted mineralization of organic sunscreens in water suspension and sodium dodecyl sulfate micelles.
The photostability of the widely used UVB sunscreen agents 2'-ethylhexyl-2-cyano-3-phenylcinnamate (1), 2-hydroxy-4-methoxybenzophenone (2), octyl salicilate (3), and 2'-ethylhexyl-4-methoxycinnamate (4) has been investigated under UVA irradiation in the absence and presence of TiO2, an inorganic filter commonly employed in combination with organic filters in sunscreen preparations. In the absence of TiO2, 1-3 are photostable and 4 undergoes the expected E-Z isomerization; the presence of TiO2 caused mineralization of the organic filters and, surprisingly, the process is noticeably faster in the presence of surfactant than in sunscreen and water suspensions. The results indicate that in water suspension, mineralization is likely to occur on or near the TiO2 particle surface; when the organic sunscreens are segregated in the micelle core, reactive radicals, produced during TiO2-promoted degradation of the micellar system, may participate in sunscreen degradation. In addition, a pre-fluorescent probe for carbon-centered radical detection, 4-(3-hydroxy-2-methyl-4-quinolineoxy)-2,2,6,6-tetramethylpiperidine-1-oxyl free radical or QT (5), was employed to demonstrate that carbon-centered radicals are evolved during micelle degradation and may participate in the mineralization of sunscreens. Topics: Fluorescent Dyes; Magnetic Resonance Spectroscopy; Micelles; Sodium Dodecyl Sulfate; Sunscreening Agents; Titanium; Water | 2003 |