sodium-dodecyl-sulfate and n-heptane

sodium-dodecyl-sulfate has been researched along with n-heptane* in 3 studies

Other Studies

3 other study(ies) available for sodium-dodecyl-sulfate and n-heptane

ArticleYear
An integrated quality by design and mixture-process variable approach in the development of a capillary electrophoresis method for the analysis of almotriptan and its impurities.
    Journal of chromatography. A, 2014, Apr-25, Volume: 1339

    The development of a capillary electrophoresis (CE) method for the assay of almotriptan (ALM) and its main impurities using an integrated Quality by Design and mixture-process variable (MPV) approach is described. A scouting phase was initially carried out by evaluating different CE operative modes, including the addition of pseudostationary phases and additives to the background electrolyte, in order to approach the analytical target profile. This step made it possible to select normal polarity microemulsion electrokinetic chromatography (MEEKC) as operative mode, which allowed a good selectivity to be achieved in a low analysis time. On the basis of a general Ishikawa diagram for MEEKC methods, a screening asymmetric matrix was applied in order to screen the effects of the process variables (PVs) voltage, temperature, buffer concentration and buffer pH, on critical quality attributes (CQAs), represented by critical separation values and analysis time. A response surface study was then carried out considering all the critical process parameters, including both the PVs and the mixture components (MCs) of the microemulsion (borate buffer, n-heptane as oil, sodium dodecyl sulphate/n-butanol as surfactant/cosurfactant). The values of PVs and MCs were simultaneously changed in a MPV study, making it possible to find significant interaction effects. The design space (DS) was defined as the multidimensional combination of PVs and MCs where the probability for the different considered CQAs to be acceptable was higher than a quality level π=90%. DS was identified by risk of failure maps, which were drawn on the basis of Monte-Carlo simulations, and verification points spanning the design space were tested. Robustness testing of the method, performed by a D-optimal design, and system suitability criteria allowed a control strategy to be designed. The optimized method was validated following ICH Guideline Q2(R1) and was applied to a real sample of ALM coated tablets.

    Topics: 1-Butanol; Chromatography, Micellar Electrokinetic Capillary; Drug Contamination; Electrophoresis, Capillary; Emulsions; Heptanes; Monte Carlo Method; Regression Analysis; Serotonin 5-HT1 Receptor Agonists; Sodium Dodecyl Sulfate; Surface-Active Agents; Tablets; Tryptamines

2014
Evaluation of the separation mechanism of electrokinetic chromatography with a microemulsion and cyclodextrins using NMR and molecular modeling.
    Electrophoresis, 2011, Volume: 32, Issue:21

    Electrokinetic chromatography (EKC) allows the separation of closely related substances by the detection of fine effects in analyte-separation system interactions. With the goal of understanding the fine effects involved in separation using a dual cyclodextrin-microemulsion EKC system, an integrated study of NMR and molecular modeling was carried out. The above dual cyclodextrin-microemulsion system was previously used in the separation of clemastine and its related substances and was prepared by the addition of methyl-β-cyclodextrin (MβCD) and heptakis(2,6-di-O-methyl)-β-cyclodextrin (DMβCD) to an oil-in-water microemulsion. The use of DMβCD was shown to be essential in the separation of clemastine from one of its related substance (I(B) ). A molecular modeling study allowed the different affinities of clemastine and I(B) for the two cyclodextrins to be explained. Furthermore, rotating-frame Overhauser effect spectroscopy NMR experiments clearly indicated that besides the primary pseudostationary phase, namely the ionic microemulsion, cyclodextrins acted as a secondary pseudostationary phase. In addition, it was shown that inclusion complexation of sodium dodecyl sulfate (SDS) monomers into the cyclodextrins cavity occurs; differently, the oil (n-heptane) used in the preparation of microemulsion system resulted to be not included into the macrocycle cavity. These experimental results were supported by molecular modeling, which highlighted the preferential inclusion of SDS into DMβCD. On the basis of these results, it was confirmed that, besides its primary role as the ionic carrier in EKC, SDS is involved in inclusion equilibria toward CDs, which can be effective in increasing the system selectivity.

    Topics: beta-Cyclodextrins; Chromatography, Micellar Electrokinetic Capillary; Clemastine; Drug Contamination; Emulsions; Heptanes; Models, Molecular; Nuclear Magnetic Resonance, Biomolecular; Sodium Dodecyl Sulfate; Water

2011
Effect of hydrophobically modified polymer on salt-induced structural transition in microemulsions.
    Langmuir : the ACS journal of surfaces and colloids, 2004, Jul-06, Volume: 20, Issue:14

    The phase boundaries of the middle-phase microemulsion for NaCl/SDS/H2O/1-heptane/1-pentanol systems in the absence of polymer and in the presence of unmodified poly(acrylamide) (PAM) and hydrophobically modified poly(acrylamide) (HMPAM) have been determined at varying salt concentrations. These three middle-phase microemulsions (with HMPAM, with PAM, and without polymer) were studied using interfacial tension measurement, steady-state fluorescence, and time-resolved fluorescence quenching. Compared to the polymer-free system and the system with PAM, the addition of HMPAM significantly enlarges the range of the salt concentrations for the formation of the middle-phase microemulison and causes both the excess oil and aqueous phases to increase in volume at the expense of the middle-phase microemulsion. For the middle-phase microemulsion with HMPAM, the interfacial tensions of the microemulsion phase with the excess oil phase and with the excess aqueous phase are all ultralow and exhibit higher values than those with PAM and without polymer. At the same salt concentration, the apparent surfactant aggregation number in the middle-phase microemulsion with HMPAM has the smallest value among these three systems. All results indicate that the strong interaction of surfactant with hydrophobically modified polymer has a large effect on the formation and properties of the middle-phase microemulsion.

    Topics: Acrylamide; Emulsions; Heptanes; Hydrophobic and Hydrophilic Interactions; Molecular Structure; Pentanols; Phase Transition; Polymers; Sodium Chloride; Sodium Dodecyl Sulfate; Surface Properties; Water

2004