sodium-dodecyl-sulfate and methyl-linoleate

sodium-dodecyl-sulfate has been researched along with methyl-linoleate* in 2 studies

Other Studies

2 other study(ies) available for sodium-dodecyl-sulfate and methyl-linoleate

ArticleYear
Superoxide dismutase enhances chain-breaking antioxidant capability of hydroquinones.
    Free radical research, 2001, Volume: 35, Issue:1

    2-tert-butyl-(1), 2,6-dimethyl-(2), 2,5-dimethyl-(3), trimethyl-(4), and 2,3-dimethoxy-5-methyl-(5) substituted p-hydroquinones (QH2) were tested as a chain-breaking antioxidant during the oxidation of methyl linoleate (ML) in dodecyl sulfate micellar solution, pH 7.40, at 37 degrees C. In the absence of superoxide dismutase (SOD), all the studied QH2 displayed very moderate if any antioxidant capability. When 5-25 U/ml SOD was added, QH2 showed a pronounced ability to inhibit ML oxidation. The stoichiometric factor of inhibition was found to be about one for all the tested QH2 in the presence of SOD. The reactivities of QH2 to the ML peroxy radical increase in the order QH2 5 < QH2 3 < QH2 1 approximately QH2 2 < QH2 4; reactivity of QH2 4 exceeds that reported for the majority of phenolic antioxidants. The features of QH2 as an antioxidant in aqueous environment is likely associated with the reactivity of semiquinone (O.-) formed due to attack of the peroxy radical to QH2. O.- reacts readily with molecular oxygen with formation of superoxide (O2.-); in turn, O2.- attacks both to QH2 and ML (likely, as HO2.) that results in fast depleting QH2 and chain propagation, respectively. The addition of SOD results in purging a reaction mixture from O2.- and, as a corollary, in depressing undesirable reactions with the participation of O2.-. Under these conditions, QH2 displays the theoretically highest inhibitory activity which is determined solely by the reactivity of QH2 to the peroxy radical.

    Topics: Antioxidants; Hydroquinones; Kinetics; Linoleic Acids; Lipid Peroxidation; Liposomes; Micelles; Oxidation-Reduction; Sodium Dodecyl Sulfate; Superoxide Dismutase

2001
Oxidation of methyl linoleate in aqueous dispersions induced by copper and iron.
    Archives of biochemistry and biophysics, 1992, May-15, Volume: 295, Issue:1

    The oxidations of methyl linoleate micelles in aqueous dispersions induced by copper and iron have been studied, aiming specifically at elucidating the action of the copper ion in the chain initiation. Sodium dodecyl sulfate (SDS) and tetradecyltrimethylammonium bromide (TTAB) were used as anionic and cationic surfactants, respectively, in order to see the effect of the electric charge of the micelle surface. Both copper and iron induced the oxidations of methyl linoleate micelles by decomposing lipid hydroperoxide contained initially in methyl linoleate, tert-butyl hydroperoxide, or hydrogen peroxide added to the aqueous phase. The rate of oxidation induced by cupric ions was proportional to the first power of methyl linoleate concentration and to the half power of both cupric ion and hydroperoxide concentrations, suggesting that the oxidation was initiated by the peroxyl and alkoxyl radicals formed in the decomposition of hydroperoxide by copper. The formation of alkoxyl radicals was confirmed by its trapping with a spin trap. The rate of oxidation was dependent on the type of surfactant. Methyl linoleate containing a very small amount of hydroperoxide was oxidized by copper in the SDS system, but the rate of its oxidation was negligible when TTAB was used. However, the addition of tert-butyl hydroperoxide induced the oxidation even in the TTAB system. Hydroperoxyl and hydroxyl radicals formed in the SDS system induced the oxidation, but those formed in the TTAB system did not. It was shown that the effect of radicals on the initiation of lipid peroxidation depends on the type of radicals and site of radical formation.

    Topics: Copper; Electricity; Free Radicals; Hydrogen Peroxide; Iron; Linoleic Acids; Lipid Peroxidation; Micelles; Oxidation-Reduction; Peroxides; Quaternary Ammonium Compounds; Sodium Dodecyl Sulfate; Spin Labels; Surface Properties; tert-Butylhydroperoxide; Trimethyl Ammonium Compounds; Vitamin E

1992