sodium-dodecyl-sulfate and azobenzene

sodium-dodecyl-sulfate has been researched along with azobenzene* in 4 studies

Other Studies

4 other study(ies) available for sodium-dodecyl-sulfate and azobenzene

ArticleYear
Photo-controlled reversible secondary self-assembly of supramolecular nanosheets and their drug delivery behavior.
    Journal of materials chemistry. B, 2019, 12-11, Volume: 7, Issue:48

    Supramolecular nano-drug delivery systems with stimuli-responsive features have attracted extensive attention in photodynamic therapy. In this work, a new kind of photo-controlled reversible two dimensional (2D) nanosheet was constructed by cucurbit[8]uril (CB[8])-mediated ternary complexation with lanthanide complexes, azobenzene quaternary ammonium salt and sodium dodecyl sulfonate, which exhibited rapid morphological transformation and high drug loading capacities. The constructed supramolecular secondary self-assembly system has become a very promising candidate as a drug nanocarrier.

    Topics: Azo Compounds; Drug Carriers; Drug Delivery Systems; Lanthanoid Series Elements; Macrocyclic Compounds; Nanostructures; Photochemotherapy; Sodium Dodecyl Sulfate

2019
A Light-Responsive Self-Assembly Formed by a Cationic Azobenzene Derivative and SDS as a Drug Delivery System.
    Scientific reports, 2017, 01-04, Volume: 7

    The structure of a self-assembly formed from a cationic azobenzene derivative, 4-cholesterocarbonyl-4'-(N,N,N-triethylamine butyloxyl bromide) azobenzene (CAB) and surfactant sodium dodecyl sulfate (SDS) in aqueous solution was studied by cryo-TEM and synchrotron radiation small-angle X-ray scattering (SAXS). Both unilamellar and multilamellar vesicles could be observed. CAB in vesicles were capable to undergo reversible trans-to-cis isomerization upon UV or visible light irradiation. The structural change upon UV light irradiation could be catched by SAXS, which demonstrated that the interlamellar spacing of the cis-multilamellar vesicles increased by 0.2-0.3 nm. Based on this microstructural change, the release of rhodamine B (RhB) and doxorubicin (DOX) could be triggered by UV irradiation. When incubated NIH 3T3 cells and Bel 7402 cells with DOX-loaded CAB/SDS vesicles, UV irradiation induced DOX release decreased the viability of both cell lines significantly compared with the non-irradiated cells. The in vitro experiment indicated that CAB/SDS vesicles had high efficiency to deliver loaded molecules into cells. The in vivo experiment showed that CAB/SDS vesicles not only have high drug delivery efficiency into rat retinas, but also could maintain high drug concentration for a longer time. CAB/SDS catanionic vesicles may find potential applications as a smart drug delivery system for controlled release by light.

    Topics: Animals; Antineoplastic Agents; Azo Compounds; Cell Line; Cryoelectron Microscopy; Doxorubicin; Drug Delivery Systems; Fluorescent Dyes; Humans; Light; Mice; Rhodamines; Scattering, Small Angle; Sodium Dodecyl Sulfate; Ultraviolet Rays

2017
Effect of light on self-assembly of aqueous mixtures of sodium dodecyl sulfate and a cationic, bolaform surfactant containing azobenzene.
    Langmuir : the ACS journal of surfaces and colloids, 2007, Apr-24, Volume: 23, Issue:9

    We report light and small-angle neutron scattering measurements that characterize microstructures formed in aqueous surfactant solutions (up to 1.0 wt % surfactant) containing mixtures of sodium dodecyl sulfate (SDS) and the light-sensitive bolaform surfactant, bis(trimethylammoniumhexyloxy)azobenzene dibromide (BTHA) as a function of composition, equilibration time, and photostationary state (i.e., solutions rich in cis-BTHA or trans-BTHA). We observed formation of vesicles in both SDS-rich and trans-BTHA-rich regions of the microstructure diagram, with vesicles present over a particularly broad range of compositions for trans-BTHA-rich solutions. Illumination of mixtures of BTHA and SDS with a broadband UV light source leads to formation of photostationary states where the fraction of BTHA present as cis isomer (75-80% cis-BTHA) is largely independent of the mixing ratio of SDS and BTHA. For a relatively limited set of mixing ratios of SDS and BTHA, we observed UV illumination of SDS-rich vesicles to result in the reversible transformation of the vesicles to micellar aggregates and UV illumination of BTHA-rich vesicles to result in irreversible precipitation. Surprisingly, however, for many mixtures of trans-BTHA and SDS that formed solutions containing vesicles, illumination with UV light (which was confirmed to lead to photoisomerization of BTHA) resulted in only a small decrease in the number of vesicles in solution, relatively little change in the sizes of the remaining vesicles, and coexistance of the vesicles with micelles. These observations are consistent with a physical model in which the trans and cis isomers of BTHA present at the photostationary state tend to segregate between the different microstructures coexisting in solution (e.g., vesicles rich in trans-BTHA and SDS coexist with micelles rich in cis-BTHA and SDS). The results presented in this paper provide guidance for the design of light-tunable surfactants systems.

    Topics: Azo Compounds; Cations; Molecular Structure; Photochemistry; Quaternary Ammonium Compounds; Sodium Dodecyl Sulfate; Solutions; Stereoisomerism; Surface-Active Agents; Time; Ultraviolet Rays; Water

2007
Small-angle neutron scattering from mixtures of sodium dodecyl sulfate and a cationic, bolaform surfactant containing azobenzene.
    Langmuir : the ACS journal of surfaces and colloids, 2005, Jul-05, Volume: 21, Issue:14

    This paper reports on the microstructures formed in aqueous solutions containing mixtures of sodium dodecyl sulfate (SDS) and a photosensitive, bolaform surfactant, bis(trimethylammoniumhexyloxy)azobenzene dibromide (BTHA). By using quasi-elastic light scattering and small-angle neutron scattering, we determined that aqueous solutions containing SDS and the trans isomer of BTHA (0.1 wt % total surfactant, 15 mol % BTHA, 85 mol % SDS) form vesicles with average hydrodynamic diameters of 1350 +/- 50 angstroms and bilayer thicknesses of 35 +/- 2 angstroms. The measured bilayer thickness is consistent with a model of the vesicle bilayer in which the trans isomer of BTHA spans the bilayer. Upon illumination with UV light, the BTHA underwent photoisomerization to produce a cis-rich photostationary state (80% cis isomer). We measured this photoisomerization to drive the reorganization of vesicles into cylindrical aggregates with cross-sectional radii of 19 +/- 3 angstroms and average hydrodynamic diameters of 240 +/- 50 angstroms. Equilibration of the cis-rich solution in the dark at 25 degrees C for 12 h or illumination of the solution with visible light leads to the recovery of the trans-rich photostationary state of the solution and the reformation of vesicles, thus demonstrating the potential utility of this system as the basis of a tunable fluid.

    Topics: Azo Compounds; Neutrons; Scattering, Radiation; Sodium Dodecyl Sulfate; Surface-Active Agents; Ultraviolet Rays

2005