sodium-benzoate and methylparaben

sodium-benzoate has been researched along with methylparaben* in 5 studies

Other Studies

5 other study(ies) available for sodium-benzoate and methylparaben

ArticleYear
Determination of preservatives in cosmetics, cleaning agents and pharmaceuticals using fast liquid chromatography.
    Journal of chromatographic science, 2014, Volume: 52, Issue:1

    This paper reports the development of a method for simultaneously determining five preservatives in cosmetics, cleaning agents and pharmaceuticals by fast liquid chromatography. Methylisothiazolinone, methylchloroisothiazolinone, benzyl alcohol, sodium benzoate and methylparaben were separated on a Chromolith Fast Gradient reversed-phase 18e column using gradient elution with acetonitrile and a 0.1% aqueous solution of formic acid, with a run time of 3 min. The preparation of solid and liquid samples included ultrasonic extraction with methanol with recoveries ranging from 69 to 119%. The developed method was used to analyze samples of cosmetics (66 samples), cleaning agents (five samples) and pharmaceutical industry products (17 samples).

    Topics: Benzyl Alcohol; Chromatography, Liquid; Cosmetics; Detergents; Limit of Detection; Linear Models; Parabens; Pharmaceutical Preparations; Preservatives, Pharmaceutical; Reproducibility of Results; Sodium Benzoate; Thiazoles

2014
Key role for efflux in the preservative susceptibility and adaptive resistance of Burkholderia cepacia complex bacteria.
    Antimicrobial agents and chemotherapy, 2013, Volume: 57, Issue:7

    Bacteria from the Burkholderia cepacia complex (Bcc) are encountered as industrial contaminants, and little is known about the species involved or their mechanisms of preservative resistance. Multilocus sequence typing (MLST) revealed that multiple Bcc species may cause contamination, with B. lata (n = 17) and B. cenocepacia (n = 11) dominant within the collection examined. At the strain level, 11 of the 31 industrial sequence types identified had also been recovered from either natural environments or clinical infections. Minimal inhibitory (MIC) and minimum bactericidal (MBC) preservative concentrations varied across 83 selected Bcc strains, with industrial strains demonstrating increased tolerance for dimethylol dimethyl hydantoin (DMDMH). Benzisothiazolinone (BIT), DMDMH, methylisothiazolinone (MIT), a blend of 3:1 methylisothiazolinone-chloromethylisothiazolinone (M-CMIT), methyl paraben (MP), and phenoxyethanol (PH), were all effective anti-Bcc preservatives; benzethonium chloride (BC) and sodium benzoate (SB) were least effective. Since B. lata was the dominant industrial Bcc species, the type strain, 383(T) (LMG 22485(T)), was used to study preservative tolerance. Strain 383 developed stable preservative tolerance for M-CMIT, MIT, BIT, and BC, which resulted in preservative cross-resistance and altered antibiotic susceptibility, motility, and biofilm formation. Transcriptomic analysis of the B. lata 383 M-CMIT-adapted strain demonstrated that efflux played a key role in its M-CMIT tolerance and elevated fluoroquinolone resistance. The role of efflux was corroborated using the inhibitor l-Phe-Arg-β-napthylamide, which reduced the MICs of M-CMIT and ciprofloxacin. In summary, intrinsic preservative tolerance and stable adaptive changes, such as enhanced efflux, play a role in the ability of Bcc bacteria to cause industrial contamination.

    Topics: Bacterial Proteins; Bacterial Typing Techniques; Base Sequence; Benzethonium; Biofilms; Burkholderia cepacia complex; Burkholderia Infections; DNA Topoisomerases; Drug Resistance, Multiple, Bacterial; Ethylene Glycols; Fluoroquinolones; Humans; Hydantoins; Microbial Sensitivity Tests; Multilocus Sequence Typing; Occupational Health; Parabens; Preservatives, Pharmaceutical; Sequence Analysis, DNA; Sodium Benzoate; Thiazoles

2013
Simultaneous determination of some water-soluble vitamins and preservatives in multivitamin syrup by validated stability-indicating high-performance liquid chromatography method.
    Journal of chromatography. A, 2008, Aug-22, Volume: 1202, Issue:2

    HPLC stability-indicating method has been developed for the simultaneous determination of some water-soluble vitamins (ascorbic acid, thiamine hydrochloride, riboflavin-5'-phosphate sodium, pyridoxine hydrochloride, nicotinamide, D(+)-panthenol) and two preservatives (methylparaben and sodium benzoate) in multivitamin syrup preparation. Water-soluble vitamins, preservatives and their degradants were separated on Zorbax SB-Aq (C(18)) (250 mm x 4.6 mm, 5 microm) column at an ambient temperature. Combined isocratic and gradient elution was performed with a mobile phase consisting of 0.0125 M hexane-1-sulfonic acid sodium salt in 0.1% (m/v) o-phosphoric acid, pH 2.4-2.5 (solvent A) and acetonitrile (solvent B) at the flow-rate 1 ml min(-1). Starting with solvent A an isocratic elution was performed for 15 min, then the composition was changed to 85% of A and 15% of B during the next 20 min and it was constant for 5 min, then the composition was changed to 70% of A and 30% of B during next 15 min and it was constant for 5 min and finally was changed to 100% of A as at the beginning of the elution. Detection was performed with diode array detector at 210, 230 and 254 nm. Multivitamin syrup preparation was subjected to stress testing (forced degradation) in order to demonstrate that degradants from the vitamins, preservatives and/or product excipients do not interfere with the quantification of vitamins and preservatives. Typical validation characteristics: selectivity, accuracy, precision, linearity, range, limit of quantification and limit of detection were evaluated for vitamins and preservatives.

    Topics: Ascorbic Acid; Chromatography, High Pressure Liquid; Niacinamide; Pantothenic Acid; Parabens; Pyridoxine; Reproducibility of Results; Sodium Benzoate; Solubility; Thiamine; Vitamins; Water

2008
Mycoflora of two types of Portuguese dry-smoked sausages and inhibitory effect of sodium benzoate, potassium sorbate, and methyl p-hydroxybenzoate on mold growth rate.
    Journal of food protection, 2007, Volume: 70, Issue:6

    The mycoflora of chouriqo types Alentejano and Ribatejano, two varieties of Portuguese dry-smoked sausages, have been investigated after a producer-defined shelf life period (120 days at 20 +/- 5 degrees C) in modified atmosphere packaging (55% N2 and 45% CO2). On the basis of morphological and physiological characteristics, the isolates were identified as Penicillium, Aspergillus, Fusarium, Rhizopus, Monilia, Absidia, and Cephalosporium. The species identified were as follows: Penicillium terrestres (43.4%), Penicillium sp. (13.3%), Fusarium sp. (10%), Aspergillus glaucus (10%), Aspergillus versicolor (6.8%), Monilia fruticola (3.3%), Absidia sp. (3.3%), Cephalosporium sp. (3.3%), Rhizopus stolonifer (3.3%), and Fusarium tricinctum (3.3%). Additionally, the effects of three preservatives (potassium sorbate [PS], sodium benzoate [SB], and methyl p-hydroxybenzoate [MHB]) were studied on the growth rate of mold representative isolates. MHB showed a greater inhibitory effect than SB and PS in all fungi isolates, except in A. glaucus [Tm30(A)], in which the inhibitory effect of MHB was similar to PS. At 0.05% (wt/vol), all fungi were inhibited with MHB, except for R. stolonifer [Tm25(A)], which started to decrease the growth rate only at a concentration higher than 0.1%. PS was more effective at inhibiting mold growth than SB, except in Absidia sp. [Tm16(R)], in which both showed a similar inhibitory effect. MHB showed great promise as an application to the surface at 0.1% (wt/vol) to improve the stability and safety of the product through the inhibition of potential spoilage and toxigenic molds.

    Topics: Animals; Antifungal Agents; Colony Count, Microbial; Consumer Product Safety; Dose-Response Relationship, Drug; Food Microbiology; Food Packaging; Food Preservation; Food Preservatives; Fungi; Humans; Kinetics; Meat Products; Parabens; Sodium Benzoate; Sorbic Acid; Species Specificity; Time Factors

2007
Application and validation of chemometrics-assisted spectrophotometry and liquid chromatography for the simultaneous determination of six-component pharmaceuticals.
    Journal of pharmaceutical and biomedical analysis, 2006, May-03, Volume: 41, Issue:2

    Three methods are developed for the simultaneous determination of theophylline anhydrous (TH), guaiphenesin (GP), diphenhydramine hydrochloride (DP), methylparaben (MP), propylparaben (PP) and sodium benzoate (BZ) in pharmaceutical syrup. The chromatographic method depends on a high performance liquid chromatographic separation on a reversed-phase C(18) column at ambient temperature with mobile phase consisting of 25 mM KH2PO4, pH 3.2-acetonitrile (60:40, v/v). Quantitation was achieved with UV detection at 222 nm based on peak area. The other two chemometric methods applied were partial least squares (PLS-1) and principal component regression (PCR). These approaches were successfully applied to quantify the six components in the studied mixture using information included in the UV absorption spectra of appropriate solutions in the wavelength range of 220-270 nm with Deltalambda=0.4 nm. The calibration PLS-1 and PCR models were evaluated by internal validation (prediction of compounds in its own designed training set of calibration), by cross-validation (obtaining statistical parameters that show the efficiency for a calibration fit model) and by external validation over synthetic and pharmaceutical preparation. The results of PLS-1 and PCR methods were compared with the HPLC method and a good agreement was found.

    Topics: Antitussive Agents; Bronchodilator Agents; Chromatography, High Pressure Liquid; Complex Mixtures; Diphenhydramine; Expectorants; Guaifenesin; Least-Squares Analysis; Parabens; Preservatives, Pharmaceutical; Principal Component Analysis; Reproducibility of Results; Sodium Benzoate; Spectrophotometry, Ultraviolet; Technology, Pharmaceutical; Theophylline

2006