sodium-acetate--anhydrous has been researched along with squalestatin-1* in 1 studies
1 other study(ies) available for sodium-acetate--anhydrous and squalestatin-1
Article | Year |
---|---|
Metabolism of farnesyl diphosphate in tobacco BY-2 cells treated with squalestatin.
Plant isoprenoids represent a large group of compounds with a wide range of physiological functions. In the cytosol, isoprenoids are synthesized via the classical acetate/mevalonate pathway. In this pathway, farnesyl diphosphate (FPP) occupies a central position, from which isoprene units are dispatched to the different classes of isoprenoids, with sterols as the major end products. The present work deals with effects of squalestatin (SQ) on the metabolism of FPP in proliferating and synchronized cultured tobacco cv. Bright Yellow-2 cells. SQ is a potent inhibitor of squalene synthase (SQS), the first committed enzyme in the sterol pathway. At nanomolar concentrations, SQ severely impaired cell growth and sterol biosynthesis, as attested by the rapid decrease in SQS activity. At the same time, it triggered a several-fold increase in both the enzymic activity and mRNA levels of 3-hydroxy-3-methylglutaryl CoA reductase. When SQ was added to cells synchronized by aphidicolin treatment, it was found to block the cell cycle at the end of G(1) phase, but no cell death was induced. Tobacco cells were also fed exogenous tritiated trans-trans farnesol, the allylic alcohol derived from FPP, in the presence and absence of SQ. Evidence is presented that this compound was incorporated into sterols and ubiquinone Q(10). In the presence of SQ, the sterol pathway was inhibited, but no increase in the radioactivity of ubiquinone was observed, suggesting that this metabolic channel was already saturated under normal conditions. Topics: Aphidicolin; Bridged Bicyclo Compounds, Heterocyclic; Carbon Radioisotopes; Cell Cycle; Cell Division; Cell Line; Coenzymes; Farnesol; Farnesyl-Diphosphate Farnesyltransferase; G1 Phase; Hydroxymethylglutaryl CoA Reductases; Mitochondria; Nicotiana; Plants, Toxic; Polyisoprenyl Phosphates; Radioisotope Dilution Technique; Sesquiterpenes; Sodium Acetate; Sterols; Transcription, Genetic; Tricarboxylic Acids; Ubiquinone | 2000 |