snx-230 and saclofen
snx-230 has been researched along with saclofen* in 1 studies
Other Studies
1 other study(ies) available for snx-230 and saclofen
Article | Year |
---|---|
Mu-opioid and GABA(B) receptors modulate different types of Ca2+ currents in rat nodose ganglion neurons.
Whole-cell patch-clamp recordings were obtained from nodose ganglion neurons acutely dissociated from 10-30-day-old rats to characterize the Ca2+ channel types that are modulated by GABA(B) and mu-opioid receptors. Five components of high-threshold current were distinguished on the basis of their sensitivity to blockade by omega-conotoxin GVIA, nifedipine, omega-agatoxin IVA and omega-conotoxin MVIIC. Administration of the mu-opioid agonist H-Tyr-D-Ala-Gly-Phe(N-Me)-Gly-ol (0.3-1 mM) or the GABA(B) agonist baclofen in saturating concentrations suppressed high-threshold Ca2+ currents by 49.9+/-2.4% (n=69) and 18.7+/-2.1% (n=35), respectively. The inhibition by H-Tyr-D-Ala-Gly-Phe(N-Me)-Gly-ol exceeded that by baclofen in virtually all neurons that responded to both agonists (67%), and occlusion experiments revealed that responses to mu-opioid and GABA(B) receptor activation were not linearly additive. In addition, administration of staurosporine, a non-selective inhibitor of protein kinase A and C, did not affect the inhibitory responses to either agonist or prevent the occlusion of baclofen-induced current inhibition by H-Tyr-D-Ala-Gly-Phe(N-Me)-Gly-ol. Blockade of N-type channels by omega-conotoxin GVIA eliminated current suppression by baclofen in all cells tested (n=11). Mu-opioid-induced inhibition in current was abolished by omega-conotoxin GVIA in 12 of 30 neurons tested, but was only partially reduced in the remaining 18 neurons. In the latter cells administration of omega-agatoxin IVA reduced, but did not eliminate the mu-opioid sensitive current component that persisted after blockade of N-type channels. This residual component of mu-opioid-sensitive current was blocked completely by omega-conotoxin MVIIC in nine neurons, whereas responses to H-Tyr-D-Ala-Gly-Phe(N-Me)-Gly-ol were still recorded in the remaining cells after administration of these Ca2+ channel toxins and nifedipine. Dihydropyridine-sensitive (L-type) current was not affected by activation of mu-opioid or GABA(B) receptors in any of the neurons. These data indicate that in nodose ganglion neurons mu-opioid receptors are negatively coupled to N-, P- and Q-type channels as well as to a fourth, unidentified toxin-resistant Ca2+ channel. In contrast, GABA(B) receptors are coupled only to N-type channels. Furthermore, the results do not support a role for either protein kinase C or A in the modulatory pathway(s) coupling mu-opioid and GABA(B) receptors to Ca2+ channels, but rather lend Topics: 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester; Analgesics, Opioid; Animals; Baclofen; Cadmium; Calcium; Calcium Channel Agonists; Calcium Channel Blockers; Calcium Channels; Calcium Channels, L-Type; Calcium Channels, N-Type; Dose-Response Relationship, Drug; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalins; GABA Agonists; GABA Antagonists; Naloxone; Narcotic Antagonists; Nerve Tissue Proteins; Neurons; Nifedipine; Nodose Ganglion; omega-Agatoxin IVA; omega-Conotoxin GVIA; omega-Conotoxins; Patch-Clamp Techniques; Peptides; Rats; Rats, Sprague-Dawley; Receptors, GABA-B; Receptors, Opioid, mu; Spider Venoms | 1998 |