snj-1945 has been researched along with calpastatin* in 3 studies
3 other study(ies) available for snj-1945 and calpastatin
Article | Year |
---|---|
Delayed, oral pharmacological inhibition of calpains attenuates adverse post-infarction remodelling.
Calpains activate during myocardial ischemia-reperfusion and contribute to reperfusion injury. Studies in transgenic animals with altered calpain/calpastatin system subjected to permanent ischemia suggest that calpains are also involved in post-infarction remodelling and heart failure.. To determine whether delayed oral administration of the calpain inhibitor SNJ-1945 reduces adverse myocardial remodelling and dysfunction following transient coronary occlusion.. Male Sprague-Dawley rats were subjected to 30 min of ischemia followed by 21 days of reperfusion and received the calpain inhibitor SNJ-1945 intraperitoneally at the onset of reperfusion (Acute group), orally starting after 24 h of reperfusion and for 14 days (Chronic group), or the combination of both treatments. Calpain-1 and calpain-2 protein content increased and correlated with higher calpain activity in control hearts. Administration of SNJ-1945 attenuated calpain activation, and reduced scar expansion, ventricular dilation and dysfunction in both acute and chronic groups. Acute treatment reduced infarct size in hearts reperfused for 24 h and inflammation measured after 3 days. Delayed, chronic oral administration of SNJ-1945 attenuated inflammation, cardiomyocyte hypertrophy and collagen infiltration in the non-infarcted myocardium at 21 days in correlation with increased levels of IĸB and reduced NF-ĸB activation. In cultured fibroblasts, SNJ-1945 attenuated TGF-β1-induced fibroblast activation.. Our data demonstrate for the first time that long-term calpain inhibition is possible with delayed oral treatment, attenuates adverse post-infarction remodelling, likely through prevention of NF-ĸB activation, and may be a promising therapeutic intervention to prevent adverse remodelling and heart failure in patients with acute myocardial infarction. Topics: Animals; Calcium-Binding Proteins; Calpain; Carbamates; Glycoproteins; Heart; Male; Myocardial Infarction; Myocardial Reperfusion Injury; Myocardium; Rats, Sprague-Dawley | 2017 |
Critical role of calpain in axonal damage-induced retinal ganglion cell death.
Calpain, an intracellular cysteine protease, has been widely reported to be involved in neuronal cell death. The purpose of this study is to investigate the role of calpain activation in axonal damage-induced retinal ganglion cell (RGC) death. Twelve-week-old male calpstatin (an endogenous calpain inhibitor) knockout mice (CAST KO) and wild-type (WT) mice were used in this study. Axonal damage was induced by optic nerve crush (NC) or tubulin destruction induced by leaving a gelatin sponge soaked with vinblastine (VB), a microtubule disassembly chemical, around the optic nerve. Calpain activation was assessed by immunoblot analysis, which indirectly quantified the cleaved α-fodrin, a substrate of calpain. RGCs were retrogradely labeled by injecting a fluorescent tracer, Fluoro-Gold (FG), and the retinas were harvested and flat-mounted retinas prepared. The densities of FG-labeled RGCs harvested from the WT and CAST KO groups were assessed and compared. Additionally, a calpain inhibitor (SNJ-1945, 100 mg/kg/day) was administered orally, and the density of surviving RGCs was compared with that of the vehicle control group. The mean density of surviving RGCs in the CAST KO group was significantly lower than that observed in the WT group, both in NC and in VB. The mean density of surviving RGCs in the SNJ-1945-treated group was significantly higher than that of the control group. The calpain inhibitor SNJ-1945 has a neuroprotective effect against axonal damage-induced RGC death. This pathway may be an important therapeutic target for preventing this axonal damage-induced RGC death, including glaucoma and diabetic optic neuropathy and other CNS diseases that share a common etiology. Topics: Amino Acids; Animals; Axons; Brain-Derived Neurotrophic Factor; Calcium-Binding Proteins; Calpain; Carbamates; Carrier Proteins; Cell Count; Cell Death; Cells, Cultured; Disease Models, Animal; Enzyme Inhibitors; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Microfilament Proteins; Neurofilament Proteins; Optic Nerve Injuries; Retina; Retinal Ganglion Cells; Stilbamidines; Time Factors; Tubulin | 2012 |
Amelioration of retinal degeneration and proteolysis in acute ocular hypertensive rats by calpain inhibitor ((1S)-1-((((1S)-1-benzyl-3-cyclopropylamino-2,3-di-oxopropyl)amino)carbonyl)-3-methylbutyl)carbamic acid 5-methoxy-3-oxapentyl ester.
Our recent study suggested involvement of calpain-induced proteolysis in retinal degeneration and dysfunction in acute ocular hypertensive rats. The purpose of the present study was to determine if an orally available form of calpain inhibitor, ((1S)-1-((((1S)-1-benzyl-3-cyclopropylamino-2,3-di-oxopropyl)amino)carbonyl)-3-methylbutyl)carbamic acid 5-methoxy-3-oxapentyl ester (SNJ-1945), ameliorated retinal degeneration induced by acute hypertension in rats. To help extrapolate the effect of SNJ-1945 from the rat model to the human glaucomatous patient, in vitro inhibition of calpain-induced proteolysis by SNJ-1945 in monkey and human retinal proteins was compared with proteolysis in rat proteins.. Intraocular pressure (IOP) in rats was elevated to 110 mm Hg for 50 min. SNJ-1945 was administrated i.p. or orally before ocular hypertension. Retinal degeneration was evaluated by hematoxylin and eosin (H&E) staining and cell counting. Transcripts for calpains and calpastatin in rat, monkey, and human retinas were measured by quantitative RT-PCR. Calpain activities were determined by casein zymography. Soluble retinal proteins from rat, monkey, and humans were incubated with calcium to activate calpains, with or without SNJ-1945. Proteolysis of calpain substrate alpha-spectrin was analyzed by immunoblotting.. Elevated IOP caused retinal degeneration and proteolysis of alpha-spectrin. Both i.p. and oral administration of SNJ-1945 inhibited proteolysis of alpha-spectrin and ameliorated retinal degeneration. Transcript levels for calpain 1 and calpastatin were similar in rat, monkey, and human retinas. Calpain 2 transcript levels were higher in rats compared with monkey and human. Appreciable caseinolytic activities due to calpains were observed in monkey and human retinas. Incubation of retinal soluble proteins with calcium led to proteolysis of alpha-spectrin due to calpains in rat, monkey, and human samples. SNJ-1945 similarly inhibited proteolysis in all species.. Our results suggested that orally available calpain inhibitor SNJ-1945 might be a possible candidate drug for testing in preventing progression of glaucomatous retinal degeneration. Topics: Animals; Calcium-Binding Proteins; Calpain; Carbamates; Disease Models, Animal; Drug Administration Routes; Glycoproteins; Haplorhini; Humans; Intraocular Pressure; Ocular Hypertension; Rats; Rats, Sprague-Dawley; Retinal Degeneration; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Staining and Labeling; Time Factors | 2006 |