sk&f-45905 and arachidonyltrifluoromethane

sk&f-45905 has been researched along with arachidonyltrifluoromethane* in 2 studies

Other Studies

2 other study(ies) available for sk&f-45905 and arachidonyltrifluoromethane

ArticleYear
Evidence that 85 kDa phospholipase A2 is not linked to CoA-independent transacylase-mediated production of platelet-activating factor in human monocytes.
    Biochimica et biophysica acta, 1997, Jun-02, Volume: 1346, Issue:2

    Platelet-activating factor (PAF) production is carefully controlled in inflammatory cells. The specific removal of arachidonate (AA) from 1-O-alkyl-2-arachidonoyl-sn-glycero-3-phosphocholine (GPC), thought to be mediated by CoA-independent transacylase (CoA-IT), is required to generate the PAF precursor 1-O-alkyl-2-lyso-GPC in human neutrophils. Exposure of A23187-stimulated human monocytes to the CoA-IT inhibitors SK&F 98625 and SK&F 45905 inhibited PAF formation (IC50s of 10 and 12 microM, respectively), indicating that these cells also need CoA-IT activity for PAF production. Because CoA-IT activity transfers arachidonate to a 2-lyso phospholipid substrate, its activity is obligated to an sn-2 acyl hydrolase to form the 2-lyso phospholipid substrate. SB 203347, an inhibitor of 14 kDa phospholipase A2 (PLA2), and AACOCF3, an inhibitor of 85 kDa PLA2, both inhibited AA release from A23187-stimulated human monocytes. However, AACOCF3 had no effect on A23187-induced PAF formation at concentrations as high as 3 microM. Further, depletion of 85 kDa PLA2 using antisense (SB 7111, 1 microM) had no effect on PAF production, indicating a lack of a role of 85 kDa PLA2 in PAF biosynthesis. Both SB 203347 and the 14 kDa PLA2 inhibitor scalaradial blocked PAF synthesis in monocytes (IC50s of 2 and 0.5 microM, respectively), suggesting a key role of 14 kDa PLA2 in this process. Further, A23187-stimulated monocytes produced two forms of PAF: 80% 1-O-alkyl-2-acetyl-GPC and 20% 1-acyl-2-acetyl-GPC, which were both equally inhibited by SB 203347. In contrast, inhibition of CoA-IT using SK&F 45905 (20 microM) had a greater effect on the production of 1-O-alkyl (-80%) than of 1-acyl (-14%) acetylated material. Finally, treatment of U937 cell membranes with exogenous human recombinant (rh) type II 14 kDa PLA2, but not rh 85 kDa PLA2, induced PAF production. Elimination of membrane CoA-IT activity by heat treatment impaired the ability of 14 kDa PLA2 to induce PAF formation. Taken together, these results suggest that a 14 kDa PLA2-like activity, and not 85 kDa PLA2, is coupled to monocyte CoA-IT-induced PAF production.

    Topics: Acyltransferases; Anti-Inflammatory Agents; Arachidonic Acid; Arachidonic Acids; Benzenesulfonates; Calcimycin; Enzyme Inhibitors; Homosteroids; Humans; Monocytes; Neutrophils; Phospholipases A; Phospholipases A2; Platelet Activating Factor; Recombinant Proteins; Sesterterpenes; Sulfonamides; Terpenes; Urea

1997
Regulation of leukotriene and platelet-activating factor synthesis in human alveolar macrophages.
    The Journal of laboratory and clinical medicine, 1997, Volume: 130, Issue:6

    It has been suggested that phospholipase A2 (PLA2) contributes to the regulation of leukotriene (LT) and platelet-activating factor (PAF) synthesis by controlling the release of their precursors, arachidonic acid (AA) and lysophosphatidylcholine (lysoPC), from membrane phospholipids. In rat alveolar macrophages (AMs), PLA2 appears to have a major role in LT synthesis but a more limited role in PAF synthesis. The present study was designed to define the role of PLA2 in LT and PAF synthesis in human AMs and determine whether differences exist between AMs obtained from normal subjects and those from patients with asthma. In the normal subjects, the calcium ionophore A23187 (Cal) increased AM PAF synthesis (percent incorporation of tritiated acetate) by 135% (p < 0.01) and LTB4 synthesis 88-fold (p < 0.001). Phorbol myristate acetate (PMA) had little effect alone, but it had a synergistic effect with Cal, increasing PAF synthesis by 466% and LTB4 synthesis to 229-fold above the control values (p < 0.001 for both). Ro 25-4331, a combined cytosolic (c) and secretory (s) PLA2 inhibitor, had little effect on the Cal-stimulated PAF synthesis, but it completely blocked the effect of PMA. It also blocked the Cal- and Cal+PMA-stimulated LTB4 synthesis. AACOCF3, a cPLA2 inhibitor, had no effect on either Cal or Cal+PMA-stimulated PAF synthesis. It reduced LTB4 synthesis, but it did so less effectively than Ro 25-4331. CoA-independent transacylase (CoAI-TA) activity in the AMs increased after stimulation and exposure to Ro 25-4331. SK&F 45905, a CoAI-TA inhibitor, reduced stimulated PAF synthesis by 30% to 40%. Patients with asthma had similar results except that cPLA2 had a greater role in stimulated LTB4 synthesis. These data indicate that PLA2 plays a direct role in human AM LT synthesis; both the cytosolic and secretory forms contribute to LT synthesis; PLA2 appears to have a more limited role in PAF synthesis, although it mediates the synergistic effect of PMA, probably via sPLA2; and CoAI-TA contributes to PAF synthesis during PLA2 inhibition. With the exception of the greater role for cPLA2 in stimulated LTB4 synthesis in the patients with asthma, the contributions of PLA2 and CoAI-TA to AM LT and PAF synthesis appear to be similar in normal subjects and patients with asthma.

    Topics: Acetyltransferases; Acyl-Carrier Protein S-Acetyltransferase; Arachidonic Acids; Asthma; Benzenesulfonates; Bronchoalveolar Lavage Fluid; Calcimycin; Calcium; Cells, Cultured; Cytosol; Enzyme Inhibitors; Humans; Ionophores; Leukotriene B4; Leukotrienes; Macrophages, Alveolar; Phospholipases A; Phospholipases A2; Platelet Activating Factor; Tetradecanoylphorbol Acetate; Urea

1997