sirolimus has been researched along with triciribine* in 3 studies
3 other study(ies) available for sirolimus and triciribine
Article | Year |
---|---|
Assessment of tantalum nanoparticle-induced MC3T3-E1 proliferation and underlying mechanisms.
In our previous study, tantalum nanoparticle (Ta-NPs) was demonstrated to promote osteoblast proliferation via autophagy induction, but the specific mechanism remains unclear. In the present study, we will explore the potential mechanism.. Ta-NPs was characterized by transmission electron microscopy, scanning electron microscopy, dynamic light scattering, and BET specific surface area test. MC3T3-E1 were treated with 0 or 20 μg/mL Ta-NPs with or without pretreatment with 10 μM LY294002, Triciribine, Rapamycin (PI3K/Akt/mTOR pathway inhibitors) for 1 h respectively. Western blotting was used to detect the expressions of pathway proteins and LC3B. CCK-8 assay was used to assess cell viability. Flow cytometry was used to detect apoptosis and cell cycle.. After pretreatment with LY294002, Triciribine and Rapamycin, the p-Akt/Akt ratio of pathway protein in Triciribine and Rapamycin groups decreased (P < 0.05), while the autophagy protein LC3-II/LC3-I in the Rapamycin group was upregulated obviously (P < 0.001). In all pretreated groups, apoptosis was increased (LY294002 group was the most obvious), G1 phase cell cycle was arrested (Triciribine and Rapamycin groups were more obvious), and MC3T3-E1 cells were proliferated much more (P < 0.01, P < 0.001, P < 0.05).. Pretreatment with Triciribine or Rapamycin has a greater effect on pathway protein Akt, cell cycle arrest, autophagy protein, and cell proliferation but with inconsistent magnitude, which may be inferred that the Akt/mTOR pathway, as well as its feedback loop, were more likely involved in these processes. Topics: 3T3 Cells; Animals; Apoptosis; Biocompatible Materials; Cell Proliferation; Chromones; Gene Expression Regulation; Materials Testing; Metal Nanoparticles; Mice; Microtubule-Associated Proteins; Morpholines; Ribonucleosides; Sirolimus; Tantalum | 2021 |
Selective inhibition of PI3K/Akt/mTOR signaling pathway regulates autophagy of macrophage and vulnerability of atherosclerotic plaque.
Macrophage infiltration contributes to the instability of atherosclerotic plaques. In the present study, we investigated whether selective inhibition of PI3K/Akt/mTOR signaling pathway can enhance the stability of atherosclerotic plaques by activation of macrophage autophagy. In vitro study, selective inhibitors or siRNA of PI3K/Akt/mTOR pathways were used to treat the rabbit's peritoneal primary macrophage cells. Inflammation related cytokines secreted by macrophages were measured. Ultrastructure changes of macrophages were examined by transmission electron microscope. mRNA or protein expression levels of autophagy related gene Beclin 1, protein 1 light chain 3 II dots (LC3-II) or Atg5-Atg12 conjugation were assayed by quantitative RT-PCR or Western blot. In vivo study, vulnerable plaque models were established in 40 New Zealand White rabbits and then drugs or siRNA were given for 8 weeks to inhibit the PI3K/Akt/mTOR signaling pathway. Intravascular ultrasound (IVUS) was performed to observe the plaque imaging. The ultrastructure of the abdominal aortic atherosclerosis lesions were analyzed with histopathology. RT-PCR or Western blot methods were used to measure the expression levels of corresponding autophagy related molecules. We found that macrophage autophagy was induced in the presence of Akt inhibitor, mTOR inhibitor and mTOR-siRNA in vitro study, while PI3K inhibitor had the opposite role. In vivo study, we found that macrophage autophagy increased significantly and the rabbits had lower plaque rupture incidence, lower plaque burden and decreased vulnerability index in the inhibitors or siRNA treated groups. We made a conclusion that selective inhibition of the Akt/mTOR signal pathway can reduce macrophages and stabilize the vulnerable atherosclerotic plaques by promoting macrophage autophagy. Topics: Animals; Atherosclerosis; Autophagy; Cells, Cultured; Chromones; Cytokines; Lipids; Macrophages, Peritoneal; Morpholines; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Plaque, Atherosclerotic; Proto-Oncogene Proteins c-akt; Rabbits; Ribonucleosides; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases | 2014 |
Preclinical testing of clinically applicable strategies for overcoming trastuzumab resistance caused by PTEN deficiency.
We have previously shown that PTEN loss confers trastuzumab resistance in ErbB2-overexpressing breast cancer using cell culture, xenograft models, and patient samples. This is a critical clinical problem because trastuzumab is used in a variety of therapeutic regimens, and at the current time, there are no established clinical strategies to overcome trastuzumab resistance. Here, we did preclinical studies on the efficacy of clinically applicable inhibitors of the Akt/mammalian target of rapamycin (mTOR) pathway to restore trastuzumab sensitivity to PTEN-deficient cells.. Cell culture and xenograft models were used to test a panel of clinically applicable, small-molecule inhibitors of the Akt/mTOR signal transduction pathway, a critical pathway downstream of ErbB2, and identify compounds with the ability to restore trastuzumab sensitivity to PTEN-deficient cells.. When trastuzumab was combined with the Akt inhibitor triciribine, breast cancer cell growth was inhibited and apoptosis was induced. In a xenograft model, combination therapy with trastuzumab and triciribine dramatically inhibited tumor growth. The combination of trastuzumab and the mTOR inhibitor RAD001 also slowed breast cancer cell growth in vitro and in vivo.. Combining trastuzumab with inhibitors of the Akt/mTOR pathway is a clinically applicable strategy and combinations of trastuzumab with triciribine or RAD001 are promising regimens for rescue of trastuzumab resistance caused by PTEN loss. Topics: Animals; Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Combined Chemotherapy Protocols; Bromodeoxyuridine; Cell Line, Tumor; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Everolimus; Female; Humans; Mice; Mice, SCID; Neoplasm Transplantation; Neoplasms; PTEN Phosphohydrolase; Ribonucleosides; Sirolimus; Trastuzumab | 2007 |