sirolimus has been researched along with salubrinal* in 4 studies
4 other study(ies) available for sirolimus and salubrinal
Article | Year |
---|---|
Mammalian target of rapamycin signaling is a mechanistic link between increased endoplasmic reticulum stress and autophagy in the placentas of pregnancies complicated by growth restriction.
Increased endoplasmic reticulum (ER) stress and autophagy have been noted in the placentas of pregnancies complicated by idiopathic intrauterine growth restriction (IUGR); however, the cause of these phenomena remains unclear. We surmised that oxygen-glucose deprivation (OGD) may increase ER stress and autophagy and that mammalian target of rapamycin (mTOR) signaling is involved in regulating placental ER stress and autophagy in pregnancies complicated by IUGR.. We obtained placentas from women with normal term pregnancies and pregnancies complicated by IUGR to compare ER stress, mTOR signaling, and levels of autophagy-related proteins between the two groups and used primary cytotrophoblast cells treated with or without salubrinal (an ER stress inhibitor), MHY1485 (an mTOR activator), or rapamycin (an mTOR inhibitor) to investigate the effects of OGD on ER stress, mTOR activity, and autophagy levels in vitro.. Women with pregnancies complicated by IUGR displayed higher placental ER stress and autophagy levels but lower mTOR activity than women with normal pregnancies. Furthermore, OGD increased ER stress, regulated in development and DNA damage responses-1 (REDD1), phosphorylated tuberous sclerosis complex 2 (TSC2), and autophagy levels and decreased mTOR activity compared to the standard culture condition; however, the salubrinal treatment attenuated these changes. Moreover, the administration of MHY1485 or rapamycin to OGD-treated cells decreased or increased autophagy levels, respectively.. Based on our results, mTOR is a mechanistic link between OGD-induced ER stress and autophagy in cytotrophoblast cells; thus, mTOR plays an essential role in the pathogenesis of pregnancies complicated by IUGR. Topics: Adult; Autophagy; Cinnamates; Endoplasmic Reticulum Stress; Female; Fetal Growth Retardation; Glucose; Humans; Hypoxia; Morpholines; Placenta; Pregnancy; Sirolimus; Thiourea; TOR Serine-Threonine Kinases; Triazines | 2017 |
Synergistic antitumor activity of the combination of salubrinal and rapamycin against human cholangiocarcinoma cells.
Less is known about the roles of eukaryotic initiation factor alpha (eIF2α) in cholangiocarcinoma (CCA). Here, we report that eIF2α inhibitor salubrinal inhibits the proliferation of human CCA cells. Clinical application of mammalian target of rapamycin (mTOR) inhibitors only has moderate antitumor efficacy. Therefore, combination approaches may be required for effective clinical use of mTOR inhibitors. Here, we investigated the efficacy of the combination of salubrinal and rapamycin in the treatment of CCA. Our data demonstrate a synergistic antitumor effect of the combination of salubrinal and rapamycin against CCA cells. Rapamycin significantly inhibits the proliferation of CCA cells. However, rapamycin initiates a negative feedback activation of Akt. Inhibition of Akt by salubrinal potentiates the efficacy of rapamycin both in vitro and in vivo. Additionally, rapamycin treatment results in the up-regulation of Bcl-xL in a xenograft mouse model. It is notable that salubrinal inhibits rapamycin-induced Bcl-xL up-regulation in vivo. Taken together, our data suggest that salubrinal and rapamycin combination might be a new and effective strategy for the treatment of CCA. Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; bcl-X Protein; Bile Duct Neoplasms; Cell Line, Tumor; Cell Proliferation; Cholangiocarcinoma; Cinnamates; Drug Synergism; Eukaryotic Initiation Factor-2; Humans; Male; Mice, Nude; Phosphorylation; Proto-Oncogene Proteins c-akt; Signal Transduction; Sirolimus; Thiourea; Time Factors; TOR Serine-Threonine Kinases; Tumor Burden; Xenograft Model Antitumor Assays | 2016 |
Eukaryotic initiation factor 2α--a downstream effector of mammalian target of rapamycin--modulates DNA repair and cancer response to treatment.
In an effort to circumvent resistance to rapamycin--an mTOR inhibitor--we searched for novel rapamycin-downstream-targets that may be key players in the response of cancer cells to therapy. We found that rapamycin, at nM concentrations, increased phosphorylation of eukaryotic initiation factor (eIF) 2α in rapamycin-sensitive and estrogen-dependent MCF-7 cells, but had only a minimal effect on eIF2α phosphorylation in the rapamycin-insensitive triple-negative MDA-MB-231 cells. Addition of salubrinal--an inhibitor of eIF2α dephosphorylation--decreased expression of a surface marker associated with capacity for self renewal, increased senescence and induced clonogenic cell death, suggesting that excessive phosphorylation of eIF2α is detrimental to the cells' survival. Treating cells with salubrinal enhanced radiation-induced increase in eIF2α phosphorylation and clonogenic death and showed that irradiated cells are more sensitive to increased eIF2α phosphorylation than non-irradiated ones. Similar to salubrinal--the phosphomimetic eIF2α variant--S51D--increased sensitivity to radiation, and both abrogated radiation-induced increase in breast cancer type 1 susceptibility gene, thus implicating enhanced phosphorylation of eIF2α in modulation of DNA repair. Indeed, salubrinal inhibited non-homologous end joining as well as homologous recombination repair of double strand breaks that were induced by I-SceI in green fluorescent protein reporter plasmids. In addition to its effect on radiation, salubrinal enhanced eIF2α phosphorylation and clonogenic death in response to the histone deacetylase inhibitor--vorinostat. Finally, the catalytic competitive inhibitor of mTOR--Ku-0063794--increased phosphorylation of eIF2α demonstrating further the involvement of mTOR activity in modulating eIF2α phosphorylation. These experiments suggest that excessive phosphorylation of eIF2α decreases survival of cancer cells; making eIF2α a worthy target for drug development, with the potential to enhance the cytotoxic effects of established anti-neoplastic therapies and circumvent resistance to rapalogues and possibly to other drugs that inhibit upstream components of the mTOR pathway. Topics: Antineoplastic Agents; Cell Line, Tumor; Cellular Senescence; Cinnamates; Deoxyribonucleases, Type II Site-Specific; DNA Repair; DNA, Neoplasm; Drug Resistance, Neoplasm; Eukaryotic Initiation Factor-2; Female; Gamma Rays; Gene Expression Regulation, Neoplastic; Green Fluorescent Proteins; Humans; Hydroxamic Acids; Membrane Proteins; Morpholines; Peptidomimetics; Phosphorylation; Pyrimidines; Saccharomyces cerevisiae Proteins; Signal Transduction; Sirolimus; Thiourea; TOR Serine-Threonine Kinases; Transgenes; Vorinostat | 2013 |
Autophagy regulates endoplasmic reticulum stress in ischemic preconditioning.
Recent studies have suggested that autophagy plays a prosurvival role in ischemic preconditioning (IPC). This study was taken to assess the linkage between autophagy and endoplasmic reticulum (ER) stress during the process of IPC. The effects of IPC on ER stress and neuronal injury were determined by exposure of primary cultured murine cortical neurons to 30 min of OGD 24 h prior to a subsequent lethal OGD. The effects of IPC on ER stress and ischemic brain damage were evaluated in rats by a brief ischemic insult followed by permanent focal ischemia (PFI) 24 h later using the suture occlusion technique. The results showed that both IPC and lethal OGD increased the LC3-II expression and decreased p62 protein levels, but the extent of autophagy activation was varied. IPC treatment ameliorated OGD-induced cell damage in cultured cortical neurons, whereas 3-MA (5-20 mM) and bafilomycin A 1 (75-150 nM) suppressed the neuroprotection induced by IPC. 3-MA, at the dose blocking autophagy, significantly inhibited IPC-induced HSP70, HSP60 and GRP78 upregulation; meanwhile, it also aggregated the ER stress and increased activated caspase-12, caspase-3 and CHOP protein levels both in vitro and in vivo models. The ER stress inhibitor Sal (75 pmol) recovered IPC-induced neuroprotection in the presence of 3-MA. Rapamycin 50-200 nM in vitro and 35 pmol in vivo 24 h before the onset of lethal ischemia reduced ER stress and ischemia-induced neuronal damage. These results demonstrated that pre-activation of autophagy by ischemic preconditioning can boost endogenous defense mechanisms to upregulate molecular chaperones, and hence reduce excessive ER stress during fatal ischemia. Topics: Adenine; Animals; Apoptosis; Autophagy; Brain Ischemia; Caspase 12; Caspase 3; Cells, Cultured; Cerebral Cortex; Cinnamates; Cytoprotection; Disease Models, Animal; Endoplasmic Reticulum; Endoplasmic Reticulum Chaperone BiP; Endoplasmic Reticulum Stress; Glucose; Heat-Shock Proteins; HSP70 Heat-Shock Proteins; Ischemic Preconditioning; Male; Mice; Neurons; Oxygen; Rats; Rats, Sprague-Dawley; Sirolimus; Thiourea; Transcription Factor CHOP | 2012 |