sirolimus has been researched along with 5-fluoroorotic-acid* in 2 studies
2 other study(ies) available for sirolimus and 5-fluoroorotic-acid
Article | Year |
---|---|
Broad antifungal resistance mediated by RNAi-dependent epimutation in the basal human fungal pathogen Mucor circinelloides.
Mucormycosis-an emergent, deadly fungal infection-is difficult to treat, in part because the causative species demonstrate broad clinical antifungal resistance. However, the mechanisms underlying drug resistance in these infections remain poorly understood. Our previous work demonstrated that one major agent of mucormycosis, Mucor circinelloides, can develop resistance to the antifungal agents FK506 and rapamycin through a novel, transient RNA interference-dependent mechanism known as epimutation. Epimutations silence the drug target gene and are selected by drug exposure; the target gene is re-expressed and sensitivity is restored following passage without drug. This silencing process involves generation of small RNA (sRNA) against the target gene via core RNAi pathway proteins. To further elucidate the role of epimutation in the broad antifungal resistance of Mucor, epimutants were isolated that confer resistance to another antifungal agent, 5-fluoroorotic acid (5-FOA). We identified epimutant strains that exhibit resistance to 5-FOA without mutations in PyrF or PyrG, enzymes which convert 5-FOA into the active toxic form. Using sRNA hybridization as well as sRNA library analysis, we demonstrate that these epimutants harbor sRNA against either pyrF or pyrG, and further show that this sRNA is lost after reversion to drug sensitivity. We conclude that epimutation is a mechanism capable of targeting multiple genes, enabling Mucor to develop resistance to a variety of antifungal agents. Elucidation of the role of RNAi in epimutation affords a fuller understanding of mucormycosis. Furthermore, it improves our understanding of fungal pathogenesis and adaptation to stresses, including the evolution of drug resistance. Topics: Antifungal Agents; Drug Resistance, Multiple, Fungal; Epigenesis, Genetic; Genes, Fungal; Humans; Mucor; Mucormycosis; Mutation; Orotate Phosphoribosyltransferase; Orotic Acid; Orotidine-5'-Phosphate Decarboxylase; RNA Interference; RNA, Fungal; Sirolimus; Tacrolimus | 2019 |
Hmo1p, a high mobility group 1/2 homolog, genetically and physically interacts with the yeast FKBP12 prolyl isomerase.
The immunosuppressive drugs FK506 and rapamycin bind to the cellular protein FKBP12, and the resulting FKBP12-drug complexes inhibit signal transduction. FKBP12 is a ubiquitous, highly conserved, abundant enzyme that catalyzes a rate-limiting step in protein folding: peptidyl-prolyl cis-trans isomerization. However, FKBP12 is dispensible for viability in both yeast and mice, and therefore does not play an essential role in protein folding. The functions of FKBP12 may involve interactions with a number of partner proteins, and a few proteins that interact with FKBP12 in the absence of FK506 or rapamycin have been identified, including the ryanodine receptor, aspartokinase, and the type II TGF-beta receptor; however, none of these are conserved from yeast to humans. To identify other targets and functions of FKBP12, we have screened for mutations that are synthetically lethal with an FKBP12 mutation in yeast. We find that mutations in HMO1, which encodes a high mobility group 1/2 homolog, are synthetically lethal with mutations in the yeast FPR1 gene encoding FKBP12. Deltahmo1 and Deltafpr1 mutants share two phenotypes: an increased rate of plasmid loss and slow growth. In addition, Hmo1p and FKBP12 physically interact in FKBP12 affinity chromatography experiments, and two-hybrid experiments suggest that FKBP12 regulates Hmo1p-Hmo1p or Hmo1p-DNA interactions. Because HMG1/2 proteins are conserved from yeast to humans, our findings suggest that FKBP12-HMG1/2 interactions could represent the first conserved function of FKBP12 other than mediating FK506 and rapamycin actions. Topics: Alleles; beta-Galactosidase; Blotting, Western; Dimerization; Fungal Proteins; Genetic Testing; Glucose; High Mobility Group Proteins; Immunophilins; Leucine; Models, Biological; Mutagenesis; Orotic Acid; Phenotype; Receptors, Formyl Peptide; Receptors, Immunologic; Receptors, Peptide; Saccharomyces cerevisiae Proteins; Sirolimus; Tacrolimus; Tacrolimus Binding Proteins; Transformation, Genetic; Yeasts | 1999 |