sirolimus has been researched along with 3-4-dihydroxyphenylglycol* in 3 studies
3 other study(ies) available for sirolimus and 3-4-dihydroxyphenylglycol
Article | Year |
---|---|
Changes in mGlu5 receptor-dependent synaptic plasticity and coupling to homer proteins in the hippocampus of Ube3A hemizygous mice modeling angelman syndrome.
Angelman syndrome (AS) is caused by the loss of Ube3A, an ubiquitin ligase that commits specific proteins to proteasomal degradation. How this defect causes autism and other pathological phenotypes associated with AS is unknown. Long-term depression (LTD) of excitatory synaptic transmission mediated by type 5 metabotropic glutamate (mGlu5) receptors was enhanced in hippocampal slices of Ube3A(m-/p+) mice, which model AS. No changes were found in NMDA-dependent LTD induced by low-frequency stimulation. mGlu5 receptor-dependent LTD in AS mice was sensitive to the protein synthesis inhibitor anisomycin, and relied on the same signaling pathways as in wild-type mice, e.g., the mitogen-activated protein kinase (MAPK) pathway, the phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycine pathway, and protein tyrosine phosphatase. Neither the stimulation of MAPK and PI3K nor the increase in Arc (activity-regulated cytoskeleton-associated protein) levels in response to mGlu5 receptor activation were abnormal in hippocampal slices from AS mice compared with wild-type mice. mGlu5 receptor expression and mGlu1/5 receptor-mediated polyphosphoinositide hydrolysis were also unchanged in the hippocampus of AS mice. In contrast, AS mice showed a reduced expression of the short Homer protein isoform Homer 1a, and an increased coupling of mGlu5 receptors to Homer 1b/c proteins in the hippocampus. These findings support the link between Homer proteins and monogenic autism, and lay the groundwork for the use of mGlu5 receptor antagonists in AS. Topics: Angelman Syndrome; Animals; Carrier Proteins; Disease Models, Animal; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; Hemizygote; Hippocampus; Homer Scaffolding Proteins; Immunosuppressive Agents; In Vitro Techniques; Long-Term Synaptic Depression; Methoxyhydroxyphenylglycol; Mice; Mice, Inbred C57BL; Mice, Transgenic; Mitogen-Activated Protein Kinase Kinases; Pyridines; Receptor, Metabotropic Glutamate 5; Signal Transduction; Sirolimus; Ubiquitin-Protein Ligases | 2014 |
Enhancement of long-term depression by soluble amyloid β protein in rat hippocampus is mediated by metabotropic glutamate receptor and involves activation of p38MAPK, STEP and caspase-3.
It is reported that the amyloid-β protein (Aβ)-induced impairments in synaptic plasticity coincide with memory decline and dementia. Although Aβ-induced inhibition of hippocampal long-term potentiation has been intensively investigated, the underlying mechanism of Aβ-enhanced long-term depression (LTD) is not clear. Here, we report that acute exposure of rat hippocampal slices to soluble Aβ-enhanced LTD induced by weak low-frequency stimulation (wLFS; 1Hz for 3 min, 180 pulses) in granule cells of the dentate gyrus. Application of LY341495 (a non-selective Group I/II metrabotropic glumate receptor (mGluR) antagonist) completely blocked Aβ-enhanced LTD, whereas D-AP5 (a not selective N-methyl-d-aspartate receptor (NMDAR) antagonist) had no effect on Aβ-enhanced LTD compared with controls. In addition, Aβ-enhanced LTD was occluded by pre-application of 3,5-dihydroxyphenylglycine, a Group1 mGluR (mGluR1/5) agonist, suggesting Aβ-enhanced LTD depends on mGluR1/5 but not NMDAR. We also report here that p38 mitogen-activated protein kinase (p38MAPK) inhibitor SB203580 and postsynaptic protein tyrosine phosphatase inhibitors phenylarsine oxide and sodium orthovanadate prevented the facilitatory effect of Aβ on LTD. Application of striatal-enriched protein tyrosine phosphatase (STEP) activator MG132 facilitated induction of LTD by wLFS, but did not block following Aβ-enhanced LTD induced by another wLFS. On the other hand, Aβ-enhanced LTD blocked following MG132-LTD by wLFS, suggesting Aβ-enhanced hippocampal LTD involves STEP activation. Application of either non-selective caspase inhibitor Z-VAD-FMK or caspase-3 selective inhibitor Z-DEVD-FMK prevented Aβ-enhanced LTD. However, neither the tumor necrosis factor-α converting enzyme inhibitor TAPI-2 nor the mammalian target of rapamycin inhibitor rapamycin prevented the enhancement of Aβ on LTD. Therefore, we conclude that soluble Aβ enhances LTD in the hippocampal dentate gyrus region, and the facilitatory effect of Aβ on LTD involves mGluR1/5, p38MAPK, STEP and caspase-3 activation. Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Amyloid beta-Peptides; Animals; Caspase 3; Electric Stimulation; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; Hippocampus; Immunosuppressive Agents; In Vitro Techniques; Long-Term Synaptic Depression; Male; Methoxyhydroxyphenylglycol; p38 Mitogen-Activated Protein Kinases; Patch-Clamp Techniques; Peptide Fragments; Protein Tyrosine Phosphatases, Non-Receptor; Rats; Rats, Wistar; Receptors, Metabotropic Glutamate; Sirolimus; Xanthenes | 2013 |
Dysregulation of mTOR signaling in fragile X syndrome.
Fragile X syndrome, the most common form of inherited mental retardation and leading genetic cause of autism, is caused by transcriptional silencing of the Fmr1 gene. The fragile X mental retardation protein (FMRP), the gene product of Fmr1, is an RNA binding protein that negatively regulates translation in neurons. The Fmr1 knock-out mouse, a model of fragile X syndrome, exhibits cognitive deficits and exaggerated metabotropic glutamate receptor (mGluR)-dependent long-term depression at CA1 synapses. However, the molecular mechanisms that link loss of function of FMRP to aberrant synaptic plasticity remain unclear. The mammalian target of rapamycin (mTOR) signaling cascade controls initiation of cap-dependent translation and is under control of mGluRs. Here we show that mTOR phosphorylation and activity are elevated in hippocampus of juvenile Fmr1 knock-out mice by four functional readouts: (1) association of mTOR with regulatory associated protein of mTOR; (2) mTOR kinase activity; (3) phosphorylation of mTOR downstream targets S6 kinase and 4E-binding protein; and (4) formation of eukaryotic initiation factor complex 4F, a critical first step in cap-dependent translation. Consistent with this, mGluR long-term depression at CA1 synapses of FMRP-deficient mice is exaggerated and rapamycin insensitive. We further show that the p110 subunit of the upstream kinase phosphatidylinositol 3-kinase (PI3K) and its upstream activator PI3K enhancer PIKE, predicted targets of FMRP, are upregulated in knock-out mice. Elevated mTOR signaling may provide a functional link between overactivation of group I mGluRs and aberrant synaptic plasticity in the fragile X mouse, mechanisms relevant to impaired cognition in fragile X syndrome. Topics: Adaptor Proteins, Signal Transducing; Animals; CA1 Region, Hippocampal; Carrier Proteins; Cell Cycle Proteins; Cognition Disorders; Disease Models, Animal; Eukaryotic Initiation Factor-4A; Eukaryotic Initiation Factors; Excitatory Postsynaptic Potentials; Fragile X Mental Retardation Protein; Fragile X Syndrome; Gene Expression Regulation; Immunoprecipitation; In Vitro Techniques; Long-Term Synaptic Depression; Methoxyhydroxyphenylglycol; Mice; Mice, Knockout; Oncogene Protein v-akt; Phosphatidylinositol 3-Kinases; Phosphoproteins; Phosphorylation; Receptors, Metabotropic Glutamate; Serine; Signal Transduction; Sirolimus | 2010 |