sincalide and harman

sincalide has been researched along with harman* in 2 studies

Other Studies

2 other study(ies) available for sincalide and harman

ArticleYear
Caerulein and cholecystokinin octapeptide (CCK-8): sedative and anticonvulsive effects in mice unaffected by the benzodiazepine antagonist Ro 15-1788.
    Neuroscience letters, 1982, Mar-05, Volume: 28, Issue:3

    Cholecystokinin octapeptide (CCK-8), caerulein and diazepam inhibited exploratory rearing activity and harman-induced convulsions in mice. Pretreatment with the selective benzodiazepine receptor antagonist Ro 15-1788, reduced or abolished the sedative and anticonvulsive effects of diazepam, but left the same effects of both peptides unaffected. The peptide-induced ptosis was even increased by Ro 15-1788. The results suggest that the CCK-like peptides do not directly interact with the benzodiazepine receptor.

    Topics: Animals; Anticonvulsants; Benzodiazepinones; Blepharoptosis; Body Temperature; Ceruletide; Cholecystokinin; Diazepam; Flumazenil; Harmine; Hypnotics and Sedatives; Male; Mice; Peptide Fragments; Seizures; Sincalide

1982
Anticonvulsant effects of caerulein, cholecystokinin octapeptide (CCK-8) and diazepam against seizures produced in mice by harman, thiosemicarbazide and isoniazid.
    Neuroscience letters, 1981, Jul-02, Volume: 24, Issue:2

    Caerulein, cholecystokinin octapeptide (CCK-8) and diazepam delayed the onset of seizures produced by harman and thiosemicarbazide (TSC). Caerulein had the potency of diazepam, whereas CCK-8 was less active by a factor of four. The convulsions induced by isoniazid (INH) were very resistant to both caerulein and diazepam; CCK-8 was not tested against isoniazid. Haloperidol did not influence the effect of TSC; it enhanced isoniazid-induced seizures, and antagonized the convulsant effect of harman.

    Topics: Animals; Anticonvulsants; Ceruletide; Cholecystokinin; Diazepam; Haloperidol; Harmine; Isoniazid; Male; Mice; Mice, Inbred Strains; Seizures; Semicarbazides; Sincalide

1981