silybin has been researched along with luteolin in 14 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 1 (7.14) | 18.2507 |
2000's | 3 (21.43) | 29.6817 |
2010's | 7 (50.00) | 24.3611 |
2020's | 3 (21.43) | 2.80 |
Authors | Studies |
---|---|
Augereau, JM; Billon, M; Gleye, J; Herbert, JM; Lale, A; Leconte, M | 1 |
Morris, ME; Yang, X; Zhang, S | 1 |
Hille, R; Pauff, JM | 1 |
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P | 1 |
Aquino, TM; Araújo-Júnior, JX; da Silva-Júnior, EF; Leoncini, GO; Rodrigues, ÉES | 1 |
Kalra, S; Khatik, GL; Kumar, GN; Kumar, R; Narang, R; Nayak, SK; Singh, SK; Sudhakar, K | 1 |
Beeson, TD; Guz, NR; Hsiang, J; Johnson, JB; Lewis, K; Stermitz, FR; Willen, S | 1 |
Matsuda, H; Nakamura, S; Nakashima, S; Oda, Y; Xu, F; Yoshikawa, M | 1 |
Albiñana, CB; Brynda, J; Fanfrlík, J; Flieger, M; Hodek, J; Karlukova, E; Konvalinka, J; Kožíšek, M; Machara, A; Majer, P; Radilová, K; Weber, J; Zima, V | 1 |
Chakrabarti, M; Ray, SK | 2 |
Barros, L; Ferreira, IC; José Alves, M; Pereira, C; Santos-Buelga, C | 1 |
Luca, A; Paduraru, L; Stanciu, GD; Stefanescu, R; Tamba, BI | 1 |
Celik, I; Ghareeb, DA; Hammoda, HM; Ibrahim, RS; Khairy, A; Zaatout, HH | 1 |
3 review(s) available for silybin and luteolin
Article | Year |
---|---|
The medicinal chemistry of Chikungunya virus.
Topics: Animals; Antiviral Agents; Biological Products; Chemistry, Pharmaceutical; Chikungunya Fever; Chikungunya virus; Dose-Response Relationship, Drug; Humans; Microbial Sensitivity Tests; Molecular Structure; Structure-Activity Relationship | 2017 |
Recent advancements in mechanistic studies and structure activity relationship of F
Topics: Animals; Anti-Bacterial Agents; Dose-Response Relationship, Drug; Enzyme Inhibitors; Humans; Microbial Sensitivity Tests; Molecular Structure; Mycobacterium; Proton-Translocating ATPases; Structure-Activity Relationship | 2019 |
Secondary Metabolites from Plants Possessing Inhibitory Properties against Beta-Amyloid Aggregation as Revealed by Thioflavin-T Assay and Correlations with Investigations on Transgenic Mouse Models of Alzheimer's Disease.
Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Benzothiazoles; Biological Products; Catechin; Flavonoids; Fluorescent Dyes; Luteolin; Mice; Mice, Transgenic; Protein Aggregates; Silybin | 2020 |
11 other study(ies) available for silybin and luteolin
Article | Year |
---|---|
Ability of different flavonoids to inhibit the procoagulant activity of adherent human monocytes.
Topics: Amino Acid Sequence; Blood Coagulation; Cell Adhesion; Endotoxins; Flavonoids; Humans; In Vitro Techniques; Interleukin-1; Molecular Sequence Data; Monocytes | 1996 |
Flavonoids are inhibitors of breast cancer resistance protein (ABCG2)-mediated transport.
Topics: Antineoplastic Agents; ATP Binding Cassette Transporter, Subfamily B, Member 1; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; Biological Transport; Cell Division; Chemokines, CC; Dose-Response Relationship, Drug; Drug Interactions; Flavonoids; Humans; Mitoxantrone; Neoplasm Proteins; Tumor Cells, Cultured | 2004 |
Inhibition studies of bovine xanthine oxidase by luteolin, silibinin, quercetin, and curcumin.
Topics: Animals; Cattle; Curcumin; Luteolin; Molecular Structure; Molybdenum; Purines; Quercetin; Silybin; Silymarin; Superoxides; Xanthine; Xanthine Oxidase | 2009 |
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship | 2012 |
Flavonolignan and flavone inhibitors of a Staphylococcus aureus multidrug resistance pump: structure-activity relationships.
Topics: ATP Binding Cassette Transporter, Subfamily B, Member 1; Cells, Cultured; Drug Resistance, Microbial; Drug Resistance, Multiple; Flavonoids; Lignans; Magnetic Resonance Spectroscopy; Microbial Sensitivity Tests; Staphylococcus aureus; Structure-Activity Relationship | 2001 |
Melanogenesis inhibitors from the desert plant Anastatica hierochuntica in B16 melanoma cells.
Topics: Agaricales; Animals; Antineoplastic Agents; Brassicaceae; Cell Proliferation; Cell Survival; Drug Screening Assays, Antitumor; Enzyme Inhibitors; Intramolecular Oxidoreductases; Melanoma, Experimental; Membrane Glycoproteins; Mice; Monophenol Monooxygenase; Oxidoreductases; Plant Extracts; RNA, Messenger; Structure-Activity Relationship; Tumor Cells, Cultured | 2010 |
Unraveling the anti-influenza effect of flavonoids: Experimental validation of luteolin and its congeners as potent influenza endonuclease inhibitors.
Topics: Antiviral Agents; Crystallography, X-Ray; Drug Evaluation, Preclinical; Endonucleases; Enzyme Assays; Enzyme Inhibitors; Flavonoids; Influenza A virus; Microbial Sensitivity Tests; Molecular Structure; Protein Binding; Protein Domains; RNA-Dependent RNA Polymerase; Structure-Activity Relationship; Viral Proteins | 2020 |
Synergistic anti-tumor actions of luteolin and silibinin prevented cell migration and invasion and induced apoptosis in glioblastoma SNB19 cells and glioblastoma stem cells.
Topics: Antineoplastic Agents; Apoptosis; Brain Neoplasms; Cell Line, Tumor; Cell Movement; Cell Survival; Dose-Response Relationship, Drug; Drug Synergism; Glioblastoma; Humans; Luteolin; Neoplasm Invasiveness; Neoplastic Stem Cells; Silybin; Silymarin | 2015 |
Anti-tumor activities of luteolin and silibinin in glioblastoma cells: overexpression of miR-7-1-3p augmented luteolin and silibinin to inhibit autophagy and induce apoptosis in glioblastoma in vivo.
Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Autophagy; Brain Neoplasms; Carmustine; Caspase 8; Cell Line, Tumor; Cell Movement; Cell Proliferation; Dacarbazine; Female; Glioblastoma; Humans; Luteolin; Mice; Mice, Nude; MicroRNAs; Signal Transduction; Silybin; Silymarin; Sirolimus; Temozolomide; Xenograft Model Antitumor Assays | 2016 |
Artichoke and milk thistle pills and syrups as sources of phenolic compounds with antimicrobial activity.
Topics: Anti-Infective Agents; Antioxidants; Cynara scolymus; Dietary Supplements; Disaccharides; Escherichia coli; Flavonoids; Luteolin; Methicillin-Resistant Staphylococcus aureus; Phenol; Plant Preparations; Proteus mirabilis; Pseudomonas aeruginosa; Quercetin; Quinic Acid; Silybin; Silybum marianum; Silymarin; Vanillic Acid | 2016 |
Forecasting of potential anti-inflammatory targets of some immunomodulatory plants and their constituents using in vitro, molecular docking and network pharmacology-based analysis.
Topics: Anti-Inflammatory Agents; Apigenin; Caspase 3; Cyclooxygenase 2; Luteolin; Molecular Docking Simulation; Network Pharmacology; Silybin | 2023 |