Page last updated: 2024-08-23

silybin and kaempferol

silybin has been researched along with kaempferol in 8 studies

Research

Studies (8)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (12.50)18.2507
2000's1 (12.50)29.6817
2010's5 (62.50)24.3611
2020's1 (12.50)2.80

Authors

AuthorsStudies
Augereau, JM; Billon, M; Gleye, J; Herbert, JM; Lale, A; Leconte, M1
Morris, ME; Yang, X; Zhang, S1
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P1
Kalra, S; Khatik, GL; Kumar, GN; Kumar, R; Narang, R; Nayak, SK; Singh, SK; Sudhakar, K1
Matsuda, H; Nakamura, S; Nakashima, S; Oda, Y; Xu, F; Yoshikawa, M1
Fortunato, S; Granchi, C; Minutolo, F1
Albiñana, CB; Brynda, J; Fanfrlík, J; Flieger, M; Hodek, J; Karlukova, E; Konvalinka, J; Kožíšek, M; Machara, A; Majer, P; Radilová, K; Weber, J; Zima, V1
Abu Bakar, S; Chiam, CW; Chu, JJ; Hassandarvish, P; Higgs, S; Lani, R; Merits, A; Moghaddam, E; Rausalu, K; Vanlandingham, D; Zandi, K1

Reviews

1 review(s) available for silybin and kaempferol

ArticleYear
Recent advancements in mechanistic studies and structure activity relationship of F
    European journal of medicinal chemistry, 2019, Nov-15, Volume: 182

    Topics: Animals; Anti-Bacterial Agents; Dose-Response Relationship, Drug; Enzyme Inhibitors; Humans; Microbial Sensitivity Tests; Molecular Structure; Mycobacterium; Proton-Translocating ATPases; Structure-Activity Relationship

2019

Other Studies

7 other study(ies) available for silybin and kaempferol

ArticleYear
Ability of different flavonoids to inhibit the procoagulant activity of adherent human monocytes.
    Journal of natural products, 1996, Volume: 59, Issue:3

    Topics: Amino Acid Sequence; Blood Coagulation; Cell Adhesion; Endotoxins; Flavonoids; Humans; In Vitro Techniques; Interleukin-1; Molecular Sequence Data; Monocytes

1996
Flavonoids are inhibitors of breast cancer resistance protein (ABCG2)-mediated transport.
    Molecular pharmacology, 2004, Volume: 65, Issue:5

    Topics: Antineoplastic Agents; ATP Binding Cassette Transporter, Subfamily B, Member 1; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; Biological Transport; Cell Division; Chemokines, CC; Dose-Response Relationship, Drug; Drug Interactions; Flavonoids; Humans; Mitoxantrone; Neoplasm Proteins; Tumor Cells, Cultured

2004
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
    Bioorganic & medicinal chemistry, 2012, Nov-15, Volume: 20, Issue:22

    Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship

2012
Melanogenesis inhibitors from the desert plant Anastatica hierochuntica in B16 melanoma cells.
    Bioorganic & medicinal chemistry, 2010, Mar-15, Volume: 18, Issue:6

    Topics: Agaricales; Animals; Antineoplastic Agents; Brassicaceae; Cell Proliferation; Cell Survival; Drug Screening Assays, Antitumor; Enzyme Inhibitors; Intramolecular Oxidoreductases; Melanoma, Experimental; Membrane Glycoproteins; Mice; Monophenol Monooxygenase; Oxidoreductases; Plant Extracts; RNA, Messenger; Structure-Activity Relationship; Tumor Cells, Cultured

2010
Anticancer agents interacting with membrane glucose transporters.
    MedChemComm, 2016, Sep-01, Volume: 7, Issue:9

    Topics:

2016
Unraveling the anti-influenza effect of flavonoids: Experimental validation of luteolin and its congeners as potent influenza endonuclease inhibitors.
    European journal of medicinal chemistry, 2020, Dec-15, Volume: 208

    Topics: Antiviral Agents; Crystallography, X-Ray; Drug Evaluation, Preclinical; Endonucleases; Enzyme Assays; Enzyme Inhibitors; Flavonoids; Influenza A virus; Microbial Sensitivity Tests; Molecular Structure; Protein Binding; Protein Domains; RNA-Dependent RNA Polymerase; Structure-Activity Relationship; Viral Proteins

2020
Antiviral activity of silymarin against chikungunya virus.
    Scientific reports, 2015, Jun-16, Volume: 5

    Topics: Animals; Antiviral Agents; Cell Line; Chikungunya virus; Chlorocebus aethiops; Cricetulus; Dose-Response Relationship, Drug; Epithelial Cells; Kaempferols; Quercetin; RNA, Viral; Silybin; Silymarin; Vero Cells; Viral Load; Virus Replication

2015