Page last updated: 2024-08-22

silver and chloramphenicol

silver has been researched along with chloramphenicol in 20 studies

Research

Studies (20)

TimeframeStudies, this research(%)All Research%
pre-19902 (10.00)18.7374
1990's0 (0.00)18.2507
2000's0 (0.00)29.6817
2010's13 (65.00)24.3611
2020's5 (25.00)2.80

Authors

AuthorsStudies
Capek, A; Perlman, D1
Koolman, J; Weser, U1
Cao, J; Günther, PM; Knauer, A; Köhler, JM; Kürsten, D; Schneider, S1
Al-Deyab, SS; El-Aassar, MR; Fouda, MM; Hafez, EE1
Cui, H; He, Y; Jiang, J; Yu, X1
Devi, LS; Joshi, SR1
Chen, J; Feng, S; Gao, F; Grant, E; Huang, Q; Lu, X; Wang, S; Xu, J1
Dixon, DJ; Franchino, A; Jakubec, P1
Wu, H; Yan, W; Yang, L; Zhang, J; Zhuang, H1
Gannimani, R; Govender, P; Mtambo, S; Pillay, K; Ramesh, M; Soliman, ME1
Meidany, P; Potgieter, MD1
Chen, Y; Dong, M; Jiang, X; Qian, Z; Xianyu, Y; Zhang, J; Zheng, W1
Duan, X; Huang, Y; Li, G; Wang, L; Wang, Y; Xiang, Y; Zheng, J1
Chew, J; Tan, YJ; Tan, YS; Tiekink, ERT; Yeo, CI1
Hashemi Fath, R; Hoseini, SJ; Rahmati, Z; Roushani, M1
Chi, H; Fu, L; Jiang, N; Lai, G; Li, X; Lin, CT; Wei, Q; Wu, L; Xu, Y; Ye, C; Yu, A; Zhu, Y1
Feng, JJ; Feng, YG; Luo, X; Mei, LP; Wang, AJ; Zhu, JH1
Barveen, NR; Chang, YH; Wang, TJ1
Chen, H; Deng, G; Li, J; Li, Z; Liu, J; Qi, X; Sun, K; Wang, Q; Yang, M1
Jayan, H; Pu, H; Sun, DW; Wei, Q1

Other Studies

20 other study(ies) available for silver and chloramphenicol

ArticleYear
Microbial transformation of peptide antibiotics. 3. Relationship of inducer structure to induction of actinomycin degrading enzymes in Actinoplanes missouriensis.
    The Journal of antibiotics, 1968, Volume: 21, Issue:6

    Topics: Actinomycetales; Chloramphenicol; Cyanides; Dactinomycin; Enzyme Induction; Esterases; Neomycin; Potassium; Silver; Streptomycin; Sulfates; Tetracycline

1968
[Protein biosynthesis in rat liver cell nuclei].
    Hoppe-Seyler's Zeitschrift fur physiologische Chemie, 1969, Volume: 350, Issue:10

    Topics: Adenosine Triphosphate; Aluminum; Amino Acids; Animals; Cell Nucleus; Chloramphenicol; Chromium; Copper; Cyanides; Cyclic AMP; Dactinomycin; Depression, Chemical; In Vitro Techniques; Iron; Liver; Manganese; Mercury; Protein Biosynthesis; Puromycin; Rats; Silver; Stimulation, Chemical; Thyroxine

1969
Uncovering toxicological complexity by multi-dimensional screenings in microsegmented flow: modulation of antibiotic interference by nanoparticles.
    Lab on a chip, 2012, Feb-07, Volume: 12, Issue:3

    Topics: Ampicillin; Anti-Bacterial Agents; Chloramphenicol; Dose-Response Relationship, Drug; Drug Synergism; Escherichia coli; Evaluation Studies as Topic; Metal Nanoparticles; Microfluidics; Reproducibility of Results; Silver; Toxicity Tests

2012
Synthesis, characterization, and antimicrobial activity of poly(acrylonitrile-co-methyl methacrylate) with silver nanoparticles.
    Applied biochemistry and biotechnology, 2013, Volume: 171, Issue:3

    Topics: Anti-Infective Agents; Candida; Cefazolin; Cefotaxime; Chloramphenicol; Escherichia coli; Metal Nanoparticles; Methylmethacrylates; Metronidazole; Microbial Sensitivity Tests; Micrococcus; Microscopy, Electron, Scanning; Nanotechnology; Pseudomonas aeruginosa; Silver; Staphylococcus aureus; Trichoderma

2013
A competitive immunoassay for sensitive detection of small molecules chloramphenicol based on luminol functionalized silver nanoprobe.
    Analytica chimica acta, 2014, Feb-17, Volume: 812

    Topics: Chloramphenicol; Immunoassay; Kinetics; Limit of Detection; Luminol; Microscopy, Electron, Transmission; Molecular Probes; Nanotechnology; Silver

2014
Evaluation of the antimicrobial potency of silver nanoparticles biosynthesized by using an endophytic fungus, Cryptosporiopsis ericae PS4.
    Journal of microbiology (Seoul, Korea), 2014, Volume: 52, Issue:8

    Topics: Anti-Bacterial Agents; Antifungal Agents; Candida albicans; Chloramphenicol; Enterococcus faecalis; Escherichia coli; Fluconazole; Fungi; Metal Nanoparticles; Microbial Sensitivity Tests; Microscopy, Electron, Scanning; Microscopy, Electron, Transmission; Salmonella enterica; Silver; Spectrometry, X-Ray Emission; Spectrophotometry; Staphylococcus aureus

2014
Fabrication of SERS-active substrates using silver nanofilm-coated porous anodic aluminum oxide for detection of antibiotics.
    Journal of food science, 2015, Volume: 80, Issue:4

    Topics: Aluminum; Aluminum Oxide; Anti-Bacterial Agents; Chloramphenicol; Food Contamination; Microscopy, Atomic Force; Microscopy, Electron, Scanning; Nanostructures; Oxides; Porosity; Silver; Silver Compounds; Spectrum Analysis, Raman

2015
Enantioselective synthesis of (-)-chloramphenicol via silver-catalysed asymmetric isocyanoacetate aldol reaction.
    Organic & biomolecular chemistry, 2016, Jan-07, Volume: 14, Issue:1

    Topics: Acetates; Aldehydes; Catalysis; Chloramphenicol; Molecular Structure; Silver; Stereoisomerism

2016
Engineered "hot" core-shell nanostructures for patterned detection of chloramphenicol.
    Biosensors & bioelectronics, 2016, Apr-15, Volume: 78

    Topics: Aptamers, Nucleotide; Biosensing Techniques; Chloramphenicol; Gold; Metal Nanoparticles; Nanoshells; Nanostructures; Silver; Spectrum Analysis, Raman

2016
γ-Cyclodextrin capped silver nanoparticles for molecular recognition and enhancement of antibacterial activity of chloramphenicol.
    Journal of inorganic biochemistry, 2016, Volume: 157

    Topics: Anti-Bacterial Agents; Chloramphenicol; gamma-Cyclodextrins; Metal Nanoparticles; Microscopy, Electron, Scanning; Molecular Dynamics Simulation; Silver; Spectrum Analysis

2016
Evaluation of the penetration of nanocrystalline silver through various wound dressing mediums: An in vitro study.
    Burns : journal of the International Society for Burn Injuries, 2018, Volume: 44, Issue:3

    Topics: Anti-Infective Agents, Local; Bandages; Biological Dressings; Burns; Cadaver; Chloramphenicol; Coated Materials, Biocompatible; Diffusion; Drug Combinations; Humans; Hydrogels; In Vitro Techniques; Metal Nanoparticles; Methicillin-Resistant Staphylococcus aureus; Microbial Collagenase; Polyesters; Polyethylenes; Pseudomonas aeruginosa; Silver; Skin; Staphylococcus aureus; Streptococcus pyogenes

2018
Cascade Reaction-Mediated Assembly of Magnetic/Silver Nanoparticles for Amplified Magnetic Biosensing.
    Analytical chemistry, 2018, 06-05, Volume: 90, Issue:11

    Topics: Animals; Biosensing Techniques; Chloramphenicol; Magnetic Phenomena; Magnetite Nanoparticles; Milk; Molecular Structure; Silver

2018
Sensitive detection of chloramphenicol based on Ag-DNAzyme-mediated signal amplification modulated by DNA/metal ion interaction.
    Biosensors & bioelectronics, 2019, Feb-15, Volume: 127

    Topics: Anti-Bacterial Agents; Biosensing Techniques; Chloramphenicol; DNA; DNA, Catalytic; Hazard Analysis and Critical Control Points; Ions; Limit of Detection; Metals; Silver

2019
In vitro anti-bacterial and time kill evaluation of binuclear tricyclohexylphosphanesilver(I) dithiocarbamates, {Cy
    Journal of inorganic biochemistry, 2019, Volume: 192

    Topics: Anti-Bacterial Agents; Chloramphenicol; Coordination Complexes; Drug Evaluation, Preclinical; Methicillin-Resistant Staphylococcus aureus; Silver; Thiocarbamates

2019
Impedimetric ultrasensitive detection of chloramphenicol based on aptamer MIP using a glassy carbon electrode modified by 3-ampy-RGO and silver nanoparticle.
    Colloids and surfaces. B, Biointerfaces, 2019, Nov-01, Volume: 183

    Topics: Animals; Aptamers, Nucleotide; Biosensing Techniques; Carbon; Chloramphenicol; Electrochemical Techniques; Electrodes; Graphite; Humans; Metal Nanoparticles; Microscopy, Electron, Transmission; Milk; Molecular Imprinting; Reproducibility of Results; Silver

2019
Intertwined Carbon Nanotubes and Ag Nanowires Constructed by Simple Solution Blending as Sensitive and Stable Chloramphenicol Sensors.
    Sensors (Basel, Switzerland), 2021, Feb-09, Volume: 21, Issue:4

    Topics: Chloramphenicol; Electrochemical Techniques; Electrodes; Humans; Nanotubes, Carbon; Nanowires; Reproducibility of Results; Silver

2021
A signal-on photoelectrochemical aptasensor for chloramphenicol assay based on 3D self-supporting AgI/Ag/BiOI Z-scheme heterojunction arrays.
    Biosensors & bioelectronics, 2021, Jun-01, Volume: 181

    Topics: Aptamers, Nucleotide; Biosensing Techniques; Chloramphenicol; Electrochemical Techniques; Silver

2021
Photochemical decoration of silver nanoparticles on silver vanadate nanorods as an efficient SERS probe for ultrasensitive detection of chloramphenicol residue in real samples.
    Chemosphere, 2021, Volume: 275

    Topics: Animals; Chloramphenicol; Metal Nanoparticles; Nanotubes; Reproducibility of Results; Silver; Silver Compounds; Spectrum Analysis, Raman; Vanadates

2021
Fluorescence determination of chloramphenicol in milk powder using carbon dot decorated silver metal-organic frameworks.
    Mikrochimica acta, 2022, 07-06, Volume: 189, Issue:8

    Topics: Animals; Carbon; Chloramphenicol; Coloring Agents; Fluorescence; Metal-Organic Frameworks; Milk; Powders; Silver

2022
Mesoporous silica coated core-shell nanoparticles substrate for size-selective SERS detection of chloramphenicol.
    Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 2023, Jan-05, Volume: 284

    Topics: Chloramphenicol; Gold; Metal Nanoparticles; Silicon Dioxide; Silver; Spectrum Analysis, Raman; Surface-Active Agents

2023