silidianin has been researched along with taxifolin* in 3 studies
3 other study(ies) available for silidianin and taxifolin
Article | Year |
---|---|
Variation in the flavonolignan composition of fruits from different Silybum marianum chemotypes and suspension cultures derived therefrom.
Mature fruits collected from different milk thistle (Silybum marianum (L.) Gaertn.) plants, grown in various habitats in Europe, were analysed for silymarin content and variation in component composition. Two different German and Polish cultivars each, as well as fruits from Hungary and Bulgaria have been compared with respect to their ratio of flavonolignan regioisomers. Besides differences in total silymarin content (0.8%-4.9%), three distinct chemotypical variations in fruit flavonolignan regioisomer composition in the cultivars have been observed. Although the differences in the diastereomer ratios of silybin A/B and isosilybin A/B were not significant, they never appeared in a 1:1 ratio. In vitro cultures have been established from seedlings of three typical chemotypes for further insights into flavonolignan content and composition in suspension cultures and the release of these specialized compounds to the extracellular space. The differences in the three Silybum marianum chemotypes were also observed in the composition of the intracellular silymarin of suspension-cultured cells. Silymarin components released to the cell culture medium, however, showed a highly differing composition with only low amounts of silychristin and silydianin. Assays with crude protein extracts prepared from suspension cells or habituated medium of these three chemotypes did not result in differences in silymarin content or composition. In in vitro assays the formation of the regioisomers silydianin and silychristin were strongly influenced by the taxifolin:coniferyl alcohol concentration ratio. Topics: Bulgaria; Cells, Cultured; Europe; Flavonols; Fruit; Lignin; Quercetin; Silybin; Silybum marianum; Silymarin; Stereoisomerism | 2016 |
Influence of exogenous salicylic acid on flavonolignans and lipoxygenase activity in the hairy root cultures of Silybum marianum.
Silymarin is one of the most potent antioxidant so far developed from plant sources used as hepatoprotectants. Influence of different concentrations (0, 1, 2, 4, 6 and 8mg/50ml culture) and exposure time (24, 48, 72, 96 and 120h) of salicylic acid on lipoxygenase activity, linoleic acid content, growth and production of silymarin in hairy root cultures of S. marianum were investigated. Detection and identification of flavonolignans was carried out by high performance liquid chromatograph method. Salicylic acid enhanced silymarin production (1.89mgg(-1) DW). The optimal feeding condition was the addition of salicylic acid (6 mg/50 ml culture) after 24h in which the silymarin content was 2.42 times higher than the control (0.78mgg(-1) DW). The content of silybin, isosilybin, silychristin, silydianin and taxifolin were 0.703, 0.017, 0.289, 0.02 and 0.863mgg(-1) DW respectively in these samples, while in non-treated hairy roots were 0.027, 0.046, 0.23, 0.022 and 0.453 respectively. Lipoxygenase activity also affected by elicitation. lipoxygenase activity increased 24h after treatment by approximately 1.57- fold (0.21 Delta OD(234)/mgproteinmin(-1)). Upon elicitation with salicylic acid, linoleic acid content of hairy roots (38.26mgg(-1) DW) were also elevated after 24h, in which the linoleic acid content was 2.37 times higher than the control (16.1mgg(-1) DW). It is feasible that elicitation with salicylic acid regulates the jasmonate pathway, which in turn mediates the elicitor-induced accumulation of silymarin. Topics: Antioxidants; Cell Culture Techniques; Flavonolignans; Linoleic Acid; Lipoxygenase; Plant Roots; Quercetin; Salicylic Acid; Silybin; Silybum marianum; Silymarin | 2009 |
Synchronized and sustained release of multiple components in silymarin from erodible glyceryl monostearate matrix system.
Development of sustained delivery systems for herbal medicines was very difficult because of their complexity in composition. The concept of synchronized release from sustained release systems, which is characterized by release of multiple components in their original ratio that defines a herbal medicine, served as the basis for keeping the original pharmacological activity. In this study, erodible matrix systems based on glyceryl monostearate and polyethylene glycol 6000 or poloxamer 188 were prepared to perform strict control on synchronized release of the five active components of silymarin, i.e. taxifolin, silychrystin, silydianin, isosilybin and silybin. The matrix system was prepared by a melt fusion method. Synchronized release was achieved with high similarity factor f(2) values between each two of the five components. Erosion profiles of the matrix were in good correlation with release profiles of the five components, showing erosion-controlled release mechanisms. Through tuning some of the formulation variables, the system can be adjusted for synchronized and sustained release of silymarin for oral administration. In vitro hemolysis study indicated that the synchronized release samples showed a much better stabilizing effect on erythrocyte membrane. Topics: Animals; Chemistry, Pharmaceutical; Delayed-Action Preparations; Drug Carriers; Drug Compounding; Flavonols; Glycerides; Hemolysis; In Vitro Techniques; Molecular Structure; Poloxamer; Polyethylene Glycols; Protective Agents; Quercetin; Rabbits; Silybin; Silymarin; Solubility; Technology, Pharmaceutical; Time Factors | 2007 |