silicon and tricalcium-silicate

silicon has been researched along with tricalcium-silicate* in 6 studies

Other Studies

6 other study(ies) available for silicon and tricalcium-silicate

ArticleYear
Bismuth release from endodontic materials: in vivo analysis using Wistar rats.
    Scientific reports, 2023, 06-15, Volume: 13, Issue:1

    Calcium silicate-based materials are used to block the communication between the root canal and the periodontal ligament space. This brings the materials into contact with tissues and the potential for local and systemic elemental release and movement. The aim of the study was to evaluate the elemental release of bismuth from ProRoot MTA in contact with connective tissues after 30 and 180 days as well as any accumulation in peripheral organs using an animal model. Tricalcium silicate and hydroxyapatite containing 20% bismuth oxide (HAp-Bi) were used as controls. The null hypothesis was that bismuth migrates from tricalcium silicate-based materials when associated with silicon. The materials were examined using scanning electron microscopy, energy dispersive spectroscopy (SEM/EDS) and X-ray diffraction prior to implantation as well as using SEM/EDS, micro X-ray fluorescence and Raman spectroscopy after implantation to assess elemental presence in surrounding tissues. Histological analysis was used to evaluate the changes in tissue architecture and inductively coupled plasma mass spectrometry (ICP-MS) was used to investigate the elemental deposition. For the systemic investigation, routine blood analysis was performed and organs were obtained to evaluate the presence of bismuth and silicon using ICP-MS after acid digestion. In the histological analysis of the implantation sites, macrophages and multinucleated giant cells could be observed after 30 days which after 180 days became a chronic infiltrate; although, no major differences were identified in red and white blood cell analyses and biochemical tests. Implantation altered the materials as observed in the Raman analysis and bismuth was detected both locally and within kidney samples after both periods of analysis, indicating the potential for accumulation of bismuth in this organ. Smaller amounts of bismuth than observed in the kidney were also detected in blood, liver and brain for the ProRoot MTA and HAp-Bi after 180 days. Bismuth was released from the ProRoot MTA locally and was detected systemically and in samples without silicon; thus, the null hypothesis was rejected. The bismuth release demonstrated that this element accumulated both locally and systemically, mainly in the kidneys in comparison with brain and liver regardless of the material base.

    Topics: Aluminum Compounds; Animals; Bismuth; Calcium Compounds; Drug Combinations; Materials Testing; Microscopy, Electron, Scanning; Oxides; Rats; Rats, Wistar; Silicates; Silicon

2023
Tracing the toxic ions of an endodontic tricalcium silicate-based sealer in local tissues and body organs.
    Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements (GMS), 2021, Volume: 68

    This study aimed to track the toxic ions released by MTA Fillapex, BioRoot RCS, and an experimental tricalcium silicate-based sealer (CEO) into local and distant tissues as well as to investigate their potential adverse effects. In addition, the chemical constituents of the sealers were also evaluated. The main components of the dry powders, pastes, and mixed sealers were characterized.. Dry powder and sealer discs were each set for 72 h and their main components were characterized by energy dispersive X-ray spectroscopy. Polyethylene tubes filled with sealers were used to measure silicon and calcium ions. Polyethylene tubes filled with sealers or empty tubes were implanted into the dorsal connective tissue of Wistar rats. On days 7, 15, 30, and 45, the animals were euthanized and their brains, livers, kidneys, and subcutaneous tissues were removed and processed to determine the concentrations of chromium, cobalt, copper, lead, iron, magnesium and nickel using an inductively coupled plasma optical emission spectrometer.. The main compounds in all sealers were carbon, oxygen, silicon, and calcium. MTA Fillapex release more Si while highest levels of Si were found in presence of BioRoot. The release of Si and Ca ions promoted by MTA Fillapex raise by time. No traces of cobalt, chromium, or magnesium were detected in any tissue. Irrespective of the sealer, no traces of copper and lead were found in the subcutaneous tissue; however, they were observed in the organs. The highest concentration of iron was identified in the liver. All sealers exhibited similar nickel traces in the brain, kidney, and liver except for MTA Fillapex, which demonstrated levels higher than CEO in the subcutaneous tissue on day 7. Tracing nickel ions over time revealed that lowest concentrations were found in subcutaneous tissue.. Taken together, our data demonstrate that CEOs have chemical compositions similar to those of other commercial sealers. Furthermore, none of them exhibited a threat to systemic health. Moreover, the minimal amounts of iron and nickel detected were not related to the sealers.

    Topics: Animals; Calcium; Calcium Compounds; Chromium; Cobalt; Copper; Epoxy Resins; Iron; Magnesium; Materials Testing; Nickel; Oxides; Polyethylenes; Rats; Rats, Wistar; Root Canal Filling Materials; Silicates; Silicon

2021
Chemical and morphological characteristics of mineral trioxide aggregate and Portland cements.
    Dental materials journal, 2016, Volume: 35, Issue:1

    The purpose of this study was to investigate the chemical composition and particle morphology of white mineral trioxide aggregate (WMTA) and two white Portland cements (CEM 1 and CEM 2). Compositional analysis was performed by energy dispersive X-ray spectroscopy, X-ray fluorescence spectrometry and X-ray diffraction whereas, morphological characteristics were analyzed by scanning electron microscope and Laser scattering particle size distribution analyzer. The elemental composition of WMTA, CEM 1 and CEM 2 were similar except for the presence of higher amounts of bismuth in WMTA. Calcium oxide and silicon oxide constitute the major portion of the three materials whereas, tricalcium silicate was detected as the major mineral phase. The particle size distribution and morphology of WMTA was finer compared to CEM 1 and CEM 2. The three tested materials had relatively similar chemical composition and irregular particle morphologies.

    Topics: Aluminum Compounds; Bismuth; Calcium Compounds; Dental Cements; Drug Combinations; Materials Testing; Microscopy, Electron, Scanning; Oxides; Particle Size; Silicates; Silicon; Spectrometry, X-Ray Emission; Surface Properties; X-Ray Diffraction

2016
Interface of dentine to root canal sealers.
    Journal of dentistry, 2014, Volume: 42, Issue:3

    Root canal sealers can interact physically or chemically with dentine. The aim of this study was to characterize the dentine-root canal sealer interface of experimental sealers based on Portland cement using an epoxy-based vehicle in comparison to an epoxy resin sealer, AH Plus.. Root canals were biomechanically prepared and filled with any one of the four experimental epoxy sealers containing Portland cement with micro- and nano-particles of either zirconium oxide or niobium oxide radiopacifers, or AH Plus. The dentine-sealer's interfaces were assessed by coronal penetration of fluorescent microspheres, the penetration of sealers labelled with Rhodamine B inside the dentine tubules (following obturation with gutta-percha and sealers using System B technique) assessed by confocal laser scanning microscopy, and the chemical characterization of dentine-sealers interface by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) line scans.. No penetration of fluorescent microspheres at the root-dentine to sealer interface was recorded for all test materials. Sealers presented greater ability to penetrate within the dentinal tubules at the coronal and mid-root thirds. The experimental sealers containing radiopacifier nano-particles exhibited a more homogeneous microstructure along the whole length of the canal. EDS-line scans results showed a migration of silicon and niobium into dentine. Peak overlap between zirconium and the phosphorous compromised the identification of the migration of the zirconium oxide into dentine.. All five sealers promoted coronal sealing. The experimental sealers exhibited promising characteristics and were comparable to AH Plus sealer. Elemental migration of the experimental sealers suggests material interaction with dentine which was not displayed by AH Plus.

    Topics: Calcium Compounds; Contrast Media; Dental Pulp Cavity; Dentin; Epoxy Resins; Fluorescent Dyes; Gutta-Percha; Humans; Materials Testing; Microscopy, Confocal; Microscopy, Electron, Scanning; Microspheres; Nanoparticles; Niobium; Oxides; Particle Size; Phosphorus; Rhodamines; Root Canal Filling Materials; Silicate Cement; Silicates; Silicon; Spectrometry, X-Ray Emission; Surface Properties; Zirconium

2014
Influence of composition on setting kinetics of new injectable and/or fast setting tricalcium silicate cements.
    Dental materials : official publication of the Academy of Dental Materials, 2014, Volume: 30, Issue:12

    New commercial tricalcium silicate based cements were elaborated to improve handling properties and setting time. The goals of the present work were: (i) to determine the composition of the new injectable and/or fast setting calcium silicate based cements, and (ii) to investigate the impact of the differences in composition on their setting kinetics.. The materials considered were Angelus MTA™, Biodentine™, MM-MTA™, MTA-Caps™, and ProRoot MTA™ as control. Elemental composition of materials was studied by Inductively Coupled Plasma-Atomic Emission Spectroscopy and X-ray Energy Dispersive analysis, whereas phases in presence were analyzed by Micro-Raman spectroscopy and X-ray Diffraction analysis and cement surface by Scanning Electron Microscope. Setting kinetics was evaluated using rheometry.. Elemental analysis revealed, for all cements, the presence of three major components: calcium, silicon and oxygen. Chlorine was detected in MM-MTA, MTA-Caps and Biodentine. Different radio-opacifiers were identified: bismuth oxide in ProRoot MTA, Angelus MTA and MM-MTA, zirconium oxide in Biodentine and calcium tungstate (CaWO4) in MTA-Caps. All cements were composed of di- and tri-calcium silicate, except Biodentine for which only the latter was detected. Major differences in setting kinetics were observed: a modulus of 8×10(8)Pa is reached after 12min for Biodentine, 150min for MM-MTA, 230min for Angelus MTA and 320min for ProRoot MTA. The maximum modulus reached by MTA-Caps was 7×10(8)Pa after 150min.. Even if these cements possess some common compounds, major differences in their composition were observed between them, which directly influence their setting kinetics.

    Topics: Aluminum Compounds; Bismuth; Calcium; Calcium Compounds; Chlorine; Dental Cements; Drug Combinations; Elastic Modulus; Materials Testing; Microscopy, Electron, Scanning; Microspectrophotometry; Oxides; Oxygen; Rheology; Silicate Cement; Silicates; Silicon; Spectrometry, X-Ray Emission; Spectrophotometry, Atomic; Spectrum Analysis, Raman; Surface Properties; Time Factors; Tungsten Compounds; X-Ray Diffraction; Zirconium

2014
Bioactivity evaluation of three calcium silicate-based endodontic materials.
    International endodontic journal, 2013, Volume: 46, Issue:9

    To compare white ProRoot MTA (WMTA), EndoSequence BC sealer (BC sealer) and Biodentine with regard to their ability to produce apatites and cause Ca and Si incorporation in adjacent human root canal dentine after immersion in phosphate-buffered saline (PBS).. Root sections of human single-rooted teeth were filled with one of the materials and immersed in PBS for 1, 7, 30 or 90 days (n = 5 each). Morphology and elemental composition of surface precipitates and interfacial dentine were analysed using a wavelength-dispersive X-ray spectroscopy electron probe microanalyser with image observation function. Ca- and Si-incorporation depths in the interfacial dentine were measured. In addition, the amount of Ca ions released from the test materials was measured by EDTA titration.. All materials produced surface precipitates of acicular or lath-like morphology with Ca/P ratio of 1.6 : 2.0. Within dentinal tubules, the three materials formed tag-like structures that were frequently composed of Ca- and P-rich and Si-poor materials, suggesting intratubular precipitation. Ca- and Si-incorporation depths were in the order of Biodentine > WMTA > BC sealer, with a significant difference between BC sealer and the others at several time-points (P < 0.05, anova and Tukey's honestly significant difference test). The concentration of released Ca ions was in the order of Biodentine > WMTA > BC sealer with significant differences between the materials (P < 0.05).. Compared with Biodentine and WMTA, BC sealer showed less Ca ion release and did not show Ca and Si incorporation as deeply in human root canal dentine when immersed in PBS for up to 90 days.

    Topics: Aluminum Compounds; Apatites; Biocompatible Materials; Buffers; Calcium; Calcium Compounds; Calcium Phosphates; Chemical Precipitation; Dental Pulp Cavity; Dentin; Drug Combinations; Electron Probe Microanalysis; Humans; Materials Testing; Oxides; Phosphorus; Root Canal Filling Materials; Silicates; Silicon; Sodium Chloride; Spectrometry, X-Ray Emission; Tantalum; Time Factors; Zirconium

2013