silicon has been researched along with tert-butoxide--potassium* in 2 studies
2 other study(ies) available for silicon and tert-butoxide--potassium
Article | Year |
---|---|
Silylation of C-H bonds in aromatic heterocycles by an Earth-abundant metal catalyst.
Heteroaromatic compounds containing carbon-silicon (C-Si) bonds are of great interest in the fields of organic electronics and photonics, drug discovery, nuclear medicine and complex molecule synthesis, because these compounds have very useful physicochemical properties. Many of the methods now used to construct heteroaromatic C-Si bonds involve stoichiometric reactions between heteroaryl organometallic species and silicon electrophiles or direct, transition-metal-catalysed intermolecular carbon-hydrogen (C-H) silylation using rhodium or iridium complexes in the presence of excess hydrogen acceptors. Both approaches are useful, but their limitations include functional group incompatibility, narrow scope of application, high cost and low availability of the catalysts, and unproven scalability. For this reason, a new and general catalytic approach to heteroaromatic C-Si bond construction that avoids such limitations is highly desirable. Here we report an example of cross-dehydrogenative heteroaromatic C-H functionalization catalysed by an Earth-abundant alkali metal species. We found that readily available and inexpensive potassium tert-butoxide catalyses the direct silylation of aromatic heterocycles with hydrosilanes, furnishing heteroarylsilanes in a single step. The silylation proceeds under mild conditions, in the absence of hydrogen acceptors, ligands or additives, and is scalable to greater than 100 grams under optionally solvent-free conditions. Substrate classes that are difficult to activate with precious metal catalysts are silylated in good yield and with excellent regioselectivity. The derived heteroarylsilane products readily engage in versatile transformations enabling new synthetic strategies for heteroaromatic elaboration, and are useful in their own right in pharmaceutical and materials science applications. Topics: Butanols; Carbon; Catalysis; Cyclization; Drug Discovery; Hydrogen; Indoles; Nitrogen; Oxygen; Potassium; Silanes; Silicon | 2015 |
Palladium-catalyzed cross-coupling reactions of silanolates: a paradigm shift in silicon-based cross-coupling reactions.
This paper chronicles the conceptual development, proof of principle experiments, and recent advances in the palladium-catalyzed cross-coupling reactions of the conjugate bases of organosilanols. The discovery that led to the design and refinement of this process represents a classical illustration of how mechanistic studies can provide a fertile ground for the invention of new reactions. On the basis of a working hypothesis (which ultimately proved to be incorrect) and the desire to effect silicon-based cross-coupling without the agency of fluoride activation, a mild and practical palladium-catalyzed cross-coupling of alkenyl-, aryl-, and heteroaryl silanolates has been developed. The mechanistic underpinnings, methodological extensions, and the successful applications of this technology to the synthesis of complex molecules are described. Topics: Butanols; Carbonates; Catalysis; Cesium; Chemical Phenomena; Chemistry, Physical; Fluorides; Humans; Organometallic Compounds; Palladium; Silicon; Trimethylsilyl Compounds | 2006 |