silicon and sulfuric-acid

silicon has been researched along with sulfuric-acid* in 11 studies

Other Studies

11 other study(ies) available for silicon and sulfuric-acid

ArticleYear
Hydrothermal alkaline synthesis and release properties of silicon compound fertiliser using high-ash coal slime.
    Environmental science and pollution research international, 2023, Volume: 30, Issue:44

    High-ash coal slime is difficult to utilise as a boiler fuel, and its accumulation results in environmental pollution. In this study, we describe a new method for the preparation of high-ash coal slime silica compound fertiliser (HASF) using CaO-KOH mixed hydrothermal method to optimize the utilization of this industrial waste and relieve the pressure on the fertiliser industry. The coal slime (D0) used in this study and its dry basis ash content by 1 mol/L and 4 mol/L sulfuric acid pre-activation (D1, D4) were greater than 85%. The effective silicon content of D0, D1, and D4 silica compound fertilisers reached 30.24%, 31.24%, and 17.35%, respectively, and the sums of effective silica-calcium-potassium oxides were 57.28%, 58.87%, and 48.16%, respectively, under the optimal reaction conditions of 230 °C, 15 h, and 1 mol/L KOH, which met the market requirements, as determined using single-factor experiments. We used XRD, FTIR, and SEM-EDS analysis techniques to demonstrate that tobermorite and leucite were the main mineral phases of the compound fertiliser, and activated coal slime D4, which contains only quartz single crystals, required more demanding reaction conditions in the synthesis reaction. Subsequently, the cumulative release pattern of HASF silica was well described by the power function equation via repeated extraction and dissolution experiments, with the dissolution rate following D4 > D1 ≈ D0. Furthermore, 4 mol/L sulfuric acid pre-activation resulted in the enrichment of HASF combined with organic matter and increased the slow-release rate of HASF silica. Thus, the synthesized HASF could have potential application prospects in soil improvement and fertilisation.

    Topics: Coal; Coal Ash; Fertilizers; Industrial Waste; Silicon; Silicon Dioxide

2023
Superfine pulverisation pretreatment to enhance crystallinity of cellulose from Lycium barbarum L. leaves.
    Carbohydrate polymers, 2021, Feb-01, Volume: 253

    Superfine pulverisation (SFP) pretreatment of Lycium barbarum L. leaves was performed to obtain highly crystalline cellulose. Compared with other common pulverisation methods, SFP enhanced cellulosic crystallinity by 18.3 % and 8.4 %, with and without post-acid treatments, respectively. XRD and solid-state NMR analyses showed that SFP facilitated the exposure of amorphous substances (i.e., hemicellulose and lignin) to NaOH and H

    Topics: Aluminum; Cellulose; Crystallization; Hydrogen Peroxide; Lignin; Lycium; Particle Size; Plant Extracts; Plant Leaves; Polysaccharides; Powders; Silicon; Sodium Hydroxide; Sulfuric Acids; Temperature

2021
Toxicity assessment and feasible recycling process for amorphous silicon and CIS waste photovoltaic panels.
    Waste management (New York, N.Y.), 2017, Volume: 59

    End-of-Life (EoL) photovoltaic (P/V) modules, which are recently included in the 2012/19/EU recast, require sound and sustainable treatment. Under this perspective, this paper deals with 2nd generation P/V waste modules, known as thin-film, via applying chemical treatment techniques. Two different types of modules are examined: (i) tandem a-Si:H/μc-Si:H panel and, (ii) Copper-Indium-Selenide (CIS) panel. Panels' pretreatment includes collection, manual dismantling and shredding; pulverization and digestion are further conducted to identify their chemical composition. A variety of elements is determined in the samples leachates' after both microwave-assisted total digestion and Toxicity Characteristic Leaching Procedure (TCLP test) using Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) analysis. The analysis reveals that several elements are detected in the two of panels, with no sample exceeds the TCLP test. Concentrations of precious and critical metals are also measured, which generates great incentives for recovery. Then, further experiments, for P/V recycling investigation, are presented using different acids or acid mixtures under a variety of temperatures and a stable S/L ratio, with or without agitation, in order to determine the optimal recycling conditions. The results verify that chemical treatment in P/V shredded samples is efficient since driving to ethylene-vinyl acetate (EVA) resin's dissolution, as well as valuable structural materials recovery (P/V glass, ribbons, cells, P/V intermediate layers). Among the solvents used, sulfuric acid and lactic acid demonstrate the most efficient and strongest performance on panels' treatment at gentle temperatures providing favorably low energy requirements.

    Topics: Copper; Electronic Waste; Glass; Indium; Lactic Acid; Recycling; Silicon; Sulfuric Acids; Temperature; Waste Management

2017
[Investigation of emergency capacities for occupational hazard accidents in silicon solar cell producing enterprises].
    Zhonghua lao dong wei sheng zhi ye bing za zhi = Zhonghua laodong weisheng zhiyebing zazhi = Chinese journal of industrial hygiene and occupational diseases, 2016, Nov-20, Volume: 34, Issue:11

    Topics: Accidents, Occupational; Burns, Chemical; Humans; Hydrofluoric Acid; Occupational Health; Silicon; Sulfuric Acids; Workplace

2016
Stepwise extraction of valuable components from red mud based on reductive roasting with sodium salts.
    Journal of hazardous materials, 2014, Sep-15, Volume: 280

    The feasibility of an integrated technological route for comprehensive utilization of red mud was verified in this study. Valuable components in the mud, including Fe2O3, Al2O3 and SiO2 were stepwise extracted by magnetic separation and sulfuric acid leaching from reduced red mud, and meanwhile TiO2 was enriched in the leaching residue. Sodium salts were proved to be favorable for the magnetic separation of metallic iron and the subsequent acid leaching of Al and Si, through facilitating the reduction of iron oxides and the growth of metallic iron grains, together with enhancing the activation of Al and Si components during the roasting process. After reductive roasting in the presence of 6% Na2CO3 and 6% Na2SO4, a magnetic concentrate containing 90.2% iron with iron recovery of 95.0% was achieved from the red mud by magnetic separation. Subsequently, 94.7% Fe, 98.6% Al and 95.9% Si were extracted by dilute sulfuric acid leaching from the upper-stream non-magnetic material, yielding a TiO2-rich material with 37.8% TiO2. Furthermore, value-added products of silica gel and Al(OH)3 were prepared from the leachate by ripening and neutralizing.

    Topics: Aluminum; Feasibility Studies; Industrial Waste; Iron; Oxidation-Reduction; Silicon; Sodium; Sulfuric Acids; Titanium

2014
Enhancing the soft tissue seal around intraosseous transcutaneous amputation prostheses using silanized fibronectin titanium alloy.
    Biomedical materials (Bristol, England), 2011, Volume: 6, Issue:2

    The success of intraosseous transcutaneous amputation prostheses (ITAP) relies on achieving a tight seal between the soft tissues and the implant in order to avoid infection. Fibronectin (Fn) may be silanized onto titanium alloy (Ti-6Al-4V) in order to promote soft-tissue attachment. The silanization process includes passivation with sulphuric acid, which alters surface characteristics. This study aimed to improve in vitro fibroblast adhesion to silanized fibronectin (SiFn) titanium alloy by omitting the passivation stage. Additionally, the study assessed the effects of SiFn on in vivo dermal attachment, comparing the results with adsorbed Fn, hydroxyapatite (HA), Fn adsorbed onto HA (HAFn) and uncoated controls. Surface topography was assessed using scanning electron microscopy, profilometry and contact angle measurement. Anti-vinculin antibodies were used to immunolocalize fibroblast adhesion sites. A histological assessment of soft-tissue attachment and cell alignment relative to implants in an in vivo ovine model was performed. Passivation resulted in rougher, more hydrophobic, microcracked surfaces and was associated with poorer fibroblast adhesion than unpassivated controls. SiFn and HAFn surfaces resulted in more favourable cell alignment in vivo, implying that dermal attachment was enhanced. These results suggest that SiFn and HAFn surfaces could be useful in optimizing the soft tissue seal around ITAP.

    Topics: Adsorption; Alloys; Amputation, Surgical; Animals; Biocompatible Materials; Cell Adhesion; Cell Line; Durapatite; Female; Fibroblasts; Fibronectins; Humans; Materials Testing; Osseointegration; Sheep; Silicon; Sulfuric Acids; Surface Properties; Titanium

2011
Purification, functionalization, and bioconjugation of carbon nanotubes.
    Methods in molecular biology (Clifton, N.J.), 2011, Volume: 751

    Bioconjugation of carbon nanotubes (CNTs) with biomolecules promises exciting applications such as biosensing, nanobiocomposite formulation, design of drug vector systems, and probing protein interactions. Pristine CNTs, however, are virtually water-insoluble and difficult to evenly disperse in a liquid matrix. Therefore, it is necessary to attach molecules or functional groups to their sidewalls to enable bioconjugation. Both noncovalent and covalent procedures can be used to conjugate CNTs with a target biomolecule for a specific bioapplication. This chapter presents a few selected protocols that can be performed at any wet chemistry laboratory to purify and biofunctionalize CNTs. The preparation of CNTs modified with metallic nanoparticles, especially gold, is also described since biomolecules can bind and self-organize on the surfaces of such metal-decorated CNTs.

    Topics: Borohydrides; Carboxylic Acids; Ferric Compounds; Gold; Immobilized Proteins; Ionic Liquids; Mechanical Phenomena; Metal Nanoparticles; Nanotubes, Carbon; Nitric Acid; Oxidation-Reduction; Polyethyleneimine; Polymers; Pyrenes; Silicon; Solubility; Static Electricity; Sulfonic Acids; Sulfuric Acids; Water

2011
Preparation of a modified flue gas desulphurization residue and its effect on pot sorghum growth and acidic soil amelioration.
    Journal of hazardous materials, 2011, Sep-15, Volume: 192, Issue:3

    A modified flue gas desulphurization residue (MFGDR) was prepared and its effects on sorghum growth and acidic soil amelioration were evaluated in this paper. The MFGDR was prepared by calcining a mixture of dry/semi-dry flue gas desulphurization (FGD) residue from a coal-fired power plant, sorted potash feldspar and/or limestone powder. The available nutrients from the MFGDR were determined with 4.91 wt% K(+), 1.15 wt% Mg(2+), 22.4 wt% Ca(2+), 7.01 wt% Si(4+) and 2.07 wt% SO(4)(2-)-S in 0.1 mol L(-1) citric acid solution. Its pH value was held at 9.60 displaying slightly alkaline. The results of sorghum pot growth in both red and crimson acidic soil for 30 days indicated that adding the MFGDR at a dosage of 2 g kg(-1) in total soil weight would increase the growth rate of biomass by 24.3-149% (wet weight basis) and 47.3-157% (dry weight), the stem length and thickness increase by 5.75-22.1% and 4.76-30.9% in contrast with CK treatment for two test cuttings, respectively. The effect on sorghum growth was attributed to the increase of available nutrients, the enhancement of soil pH value and the reduction of aluminum toxicity in acidic soil due to the addition of the MFGDR. The experimental results also suggested that the MFGDR could be effectively used to ameliorate the acidic soil which is widely distributed throughout the southern China.

    Topics: Agriculture; Biomass; Calcium; Calcium Carbonate; China; Conservation of Natural Resources; Environmental Monitoring; Gases; Hazardous Substances; Hydrogen-Ion Concentration; Magnesium; Potassium; Powders; Silicon; Soil; Sorghum; Sulfuric Acids

2011
Comparison of structural, textural and thermal characteristics of pure and acid treated bentonites from Aleksinac and Petrovac (Serbia).
    Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 2011, Volume: 82, Issue:1

    Bentonite samples collected from vicinity of Petrovac and Aleksinac were treated with different sulfuric acid molarities. Acid attack dissolved the octahedral sheets by interlayer and edge attack. The effects of the H(2)SO(4) acid caused an exchange of Al(3+), Fe(3+) and Mg(2+) with H(+) ions leading to a modification of the smectite crystalline structure. The Mg and Fe substitution in the octahedral sheets promoted the dispersion of corresponding layers and formation of amorphous silicon. The activated bentonites, after the treatment of sulfuric acid, exhibited a lower cation-exchange capacity (CEC) and significant increase of specific surface area from 6 to 387 m(2) g(-1) (bentonite from Petrovac) and from 11 to 306 m(2) g(-1) (bentonite from Aleksinac). The acid reaction caused a splitting of particles within the octahedral sheet which led to an increase in specific surface area and decrease in CEC in both bentonites.

    Topics: Aluminum; Bentonite; Cations; Hydrogen-Ion Concentration; Ions; Iron; Magnesium; Oxygen; Serbia; Silicon; Spectrophotometry; Spectroscopy, Fourier Transform Infrared; Sulfuric Acids; Surface Properties; Temperature; X-Ray Diffraction

2011
[Analysis of reaction process between Si and Fe in poly-silicic-ferric sulfate (PSF) coagulant].
    Huan jing ke xue= Huanjing kexue, 2007, Volume: 28, Issue:3

    A new inorganic polymer coagulant, poly-silic-ferric sulfate (PSF) with various Si/Fe ratios (PSF0.5, PSF1 and PSF denote Si/Fe molar ratios of 0.5, 1 and 3, respectively), was prepared using water glass, ferrous sulfate and sodium chlorate by co-polymerization, and pH value was measured during the preparation process. The influence of both Si/Fe ratio and reaction time (polymerization time) on the complexation process (bonding mode) between Si and Fe was explored with many analytical methods (such as X-ray diffraction (XRD), ultraviolet/visible absorption (UVA) scanning, transmission electron microscope (TEM), photon correlation spectra (PCS) and infrared spectrum (IR) using PSF samples taken from different reaction time at different Si/Fe ratios. The results show that the characteristics of PSF are largely influenced by both reaction time and Si/Fe ratios. PSF is found to be a complexation compound of Si, Fe and many other ions, instead of a simple mixture of raw materials. The complexation process between Si and Fe may be different from various Si/Fe ratios, namely, the bonding rate, bonding mode and the stability of the bond between Si and Fe are different from various Si/Fe ratios: the polymer based on Si-O-Fe-O-Fe-O-Si bond may be formed at low Si/Fe ratio, in comparison with that based on Si-O-Fe-O-Si-O-Si bond at high Si/Fe ratio; the formation rate of Fe-O-Fe bond is rapid and there may be a mutual acceleration between Fe-O-Fe bond and Si-O-Fe bond, while the formation rate of Si-O-Si is slow and maybe there is a mutual retardation between Si-O-Fe bond and Si-O-Si bond; the stability of Fe-O-Fe bond is weaker than that of Si-O-Fe or Si-O-Si bond.

    Topics: Ferric Compounds; Flocculation; Iron; Polymers; Silicon; Silicon Dioxide; Sulfuric Acids; Water Pollutants, Chemical; Water Purification

2007
Reaction mode between Si and Fe and evaluation of optimal species in poly-silicic-ferric coagulant.
    Journal of environmental sciences (China), 2007, Volume: 19, Issue:6

    A kind of Fe-polysilicate polymer, poly-silicic-ferric (PSF) coagulant was prepared by co-polymerization (hydroxylation of mixture of Fe3+ and fresh polysilicic acid (PS)), in which PSF0.5, PSF1 or PSF3 denotes Si/Fe molar ratio of 0.5, 1 or 3, respectively. The effects of Si/Fe ratio and reaction time (co-polymerization time or aging time) on the reaction mode between Si and Fe were studies, and the optimal species of PSF was evaluated by pH change during the preparation of PSF and coagulation tests. The results showed that the characteristics of PSF are largely affected by both reaction time and Si/Fe ratio. PSF is found to be a essential complex of Si, Fe, and many other ions. The reaction mode between Si and Fe differs with various Si/Fe ratios. The pH of PSF0.5, PSF1 or PSF3 tended to be stable when reaction time is 10, 25 or 55 min, respectively, which is almost consistent with the time reaching the relative stable morphology that is just the optimal species of higher coagulation efficiency. The optimal reaction time reaching optimal species can be evaluated by measuring the pH change during the polymerization process.

    Topics: Ferric Compounds; Flocculation; Humic Substances; Iron; Kaolin; Polymers; Silicon; Silicon Dioxide; Sulfuric Acids; Water Pollutants, Chemical; Water Purification

2007