silicon and lutetium-orthosilicate

silicon has been researched along with lutetium-orthosilicate* in 4 studies

Other Studies

4 other study(ies) available for silicon and lutetium-orthosilicate

ArticleYear
SiPM signal readout for inter-crystal scatter event identification in PET detectors.
    Physics in medicine and biology, 2020, 10-21, Volume: 65, Issue:20

    In positron emission tomography (PET) with pixelated detectors, a significant number of annihilation photons interact with scintillation crystals through single or multiple Compton scattering events. When these partial energy depositions occur across multiple crystal elements, we call them inter-crystal scatter (ICS) events. ICS events lead to incorrect localization of the annihilation photons, thereby degrading the PET image contrast, spatial resolution, and lesion detectability. The accurate identification of ICS events is the first essential step to improve the quality of PET images by rejecting ICS events or recovering ICS events without losing PET sensitivity. In this study, we propose a novel silicon photomultiplier (SiPM) readout method to identify ICS events in one-to-one coupled PET detectors with a reduced number of data acquisition channels. For concept verification, we assembled a PET detector that consists of a 16-channel SiPM array and 4 [Formula: see text] 4 lutetium oxyorthosilicate (LSO) array with a 3.2 mm crystal pitch. The proposed SiPM readout scheme serializes the 16 SiPM anode signals into four pulse train outputs encoded with four increasing time-delays in steps of 250 ns intervals. A Sum signal of the 16 SiPM anodes provides the timing information for time-of-flight measurement and a trigger signal for coincidence detection. A time-over-threshold (TOT) method was applied for obtaining the energy information followed by a subsequent TOT-to-energy calibration. We successfully identified the ICS events and determined their interacted positions and deposited energies by analyzing the digital pulses from the four pulse train output channels. The occurrence rate of ICS events was 10.85% for the 4 × 4 PET detector module with 3.2 mm-pitch LSO crystals. The PET detector yielded an energy resolution of 10.9 [Formula: see text] 0.6% and coincidence timing resolution of 285 [Formula: see text] 12 ps FWHM. We expect that the proposed method can be a useful solution for alleviating the readout burden of SiPM-based PET scanners with ICS event identification capability.

    Topics: Humans; Image Processing, Computer-Assisted; Lutetium; Photons; Positron-Emission Tomography; Silicates; Silicon

2020
Open-field mouse brain PET: design optimisation and detector characterisation.
    Physics in medicine and biology, 2017, Jul-13, Volume: 62, Issue:15

    'Open-field' PET, in which an animal is free to move within an enclosed space during imaging, is a very promising advance for neuroscientific research. It provides a key advantage over conventional imaging under anesthesia by enabling functional changes in the brain to be correlated with an animal's behavioural response to environmental or pharmacologic stimuli. Previously we have demonstrated the feasibility of open-field imaging of rats using motion compensation techniques applied to a commercially available PET scanner. However, this approach of 'retro-fitting' motion compensation techniques to an existing system is limited by the inherent geometric and performance constraints of the system. The goal of this project is to develop a purpose-built PET scanner with geometry, motion tracking and imaging performance tailored and optimised for open-field imaging of the mouse brain. The design concept is a rail-based sliding tomograph which moves according to the animal's motion. Our specific aim in this work was to evaluate candidate scanner designs and characterise the performance of a depth-of-interaction detector module for the open-field system. We performed Monte Carlo simulations to estimate and compare the sensitivity and spatial resolution performance of four scanner geometries: a ring, parallel plate, and two box variants. Each system was based on a detector block consisting of a 23  ×  23 array of 0.785  ×  0.785  ×  20 mm

    Topics: Animals; Brain; Equipment Design; Lutetium; Mice; Monte Carlo Method; Positron-Emission Tomography; Silicates; Silicon

2017
A PET detector prototype based on digital SiPMs and GAGG scintillators.
    Physics in medicine and biology, 2015, Feb-21, Volume: 60, Issue:4

    Silicon Photomultipliers (SiPM) are interesting light sensors for Positron Emission Tomography (PET). The detector signal of analog SiPMs is the total charge of all fired cells. Energy and time information have to be determined with dedicated readout electronics. Philips Digital Photon Counting has developed a SiPM with added electronics on cell level delivering a digital value of the time stamp and number of fired cells. These so called Digital Photon Counters (DPC) are fully digital devices. In this study, the feasibility of using DPCs in combination with LYSO (Lutetium Yttrium Oxyorthosilicate) and GAGG (Gadolinium Aluminum Gallium Garnet) scintillators for PET is tested. Each DPC module has 64 channels with 3.2 × 3.8775 mm(2), comprising 3200 cells each. GAGG is a recently developed scintillator (Zeff = 54, 6.63 g cm(-3), 520 nm peak emission, 46 000 photons MeV(-1), 88 ns (92%) and 230 ns (8%) decay times, non-hygroscopic, chemically and mechanically stable). Individual crystals of 2 × 2 × 6 mm(3) were coupled onto each DPC pixel. LYSO coupled to the DPC results in a coincidence time resolution (CTR) of 171 ps FWHM and an energy resolution of 12.6% FWHM at 511 keV. Using GAGG, coincidence timing is 310 ps FWHM and energy resolution is 8.5% FWHM. A PET detector prototype with 2 DPCs equipped with a GAGG array matching the pixel size (3.2 × 3.8775 × 8 mm(3)) was assembled. To emulate a ring of 10 modules, objects are rotated in the field of view. CTR of the PET is 619 ps and energy resolution is 9.2% FWHM. The iterative MLEM reconstruction is based on system matrices calculated with an analytical detector response function model. A phantom with rods of different diameters filled with (18)F was used for tomographic tests.

    Topics: Lutetium; Phantoms, Imaging; Photons; Positron-Emission Tomography; Scintillation Counting; Silicates; Silicon

2015
Analog electro-optical readout of SiPMs achieves fast timing required for time-of-flight PET/MR.
    Physics in medicine and biology, 2015, May-07, Volume: 60, Issue:9

    The design of combined positron emission tomography/magnetic resonance (PET/MR) systems presents a number of challenges to engineers, as it forces the PET system to acquire data in a space constrained environment that is sensitive to electro-magnetic interference and contains high static, radio frequency and gradient fields. In this work we validate fast timing performance of a PET scintillation detector using a potentially very compact, very low power, and MR compatible readout method in which analog silicon photomultipliers (SiPM) signals are transmitted optically away from the MR bore with little or even no additional readout electronics. This analog 'electro-optial' method could reduce the entire PET readout in the MR bore to two compact, low power components (SiPMs and lasers). Our experiments show fast timing performance from analog electro-optical readout with and without pre-amplification. With 3 mm × 3 mm × 20 mm lutetium-yttrium oxyorthosilicate (LYSO) crystals and Excelitas SiPMs the best two-sided fwhm coincident timing resolution achieved was 220 +/- 3 ps in electrical mode, 230 +/- 2 ps in electro-optical with preamp mode, and 253 +/- 2 ps in electro-optical without preamp mode. Timing measurements were also performed with Hamamatsu SiPMs and 3 mm × 3 mm × 5 mm crystals. In the future the timing degradation seen can be further reduced with lower laser noise or improvements SiPM rise time or gain.

    Topics: Amplifiers, Electronic; Lutetium; Magnetic Resonance Imaging; Multimodal Imaging; Positron-Emission Tomography; Sensitivity and Specificity; Silicates; Silicon; Time Factors

2015