silicon has been researched along with ethylene* in 10 studies
10 other study(ies) available for silicon and ethylene
Article | Year |
---|---|
Copolymerization of ethylene and isoprene via silicon bridge metallocene [rac-Me
Topics: Alkenes; Catalysis; Ethylenes; Metallocenes; Polymerization; Polymers; Silicon | 2024 |
Silicon does not mitigate cell death in cultured tobacco BY-2 cells subjected to salinity without ethylene emission.
Silicon induces cell death when ethylene is suppressed in cultured tobacco BY-2 cells. There is a crosstalk between Si and ethylene signaling. Silicon (Si) is beneficial for plant growth. It alleviates both biotic and abiotic stresses in plants. How Si works in plants is still mysterious. This study investigates the mechanism of Si-induced cell death in tobacco BY-2 cell cultures when ethylene is suppressed. Results showed that K2SiO3 alleviated the damage of NaCl stress. Si treatment rapidly increased ethylene emission and the expression of ethylene biosynthesis genes. Treatments with Si + Ag and Si + aminooxyacetic acid (AOA, ethylene biosynthesis inhibitor) reduced the cell growth and increased cell damage. The treatment with Si + Ag induced hydrogen peroxide (H2O2) generation and ultimately cell death. Some nucleus of BY-2 cells treated with Si + Ag appeared TUNEL positive. The inhibition of H2O2 and nitric oxide (NO) production reduced the cell death rate induced by Si + Ag treatment. Si eliminated the up-regulation of alternative pathway by Ag. These data suggest that ethylene plays an important role in Si function in plants. Without ethylene, Si not only failed to enhance plant resistance, but also elevated H2O2 generation and further induced cell death in tobacco BY-2 cells. Topics: Aminooxyacetic Acid; Cell Death; Cells, Cultured; Ethylenes; Gene Expression Regulation, Plant; Hydrogen Peroxide; Lipid Peroxidation; Nicotiana; Nitric Oxide; Plant Growth Regulators; Salinity; Salt Tolerance; Signal Transduction; Silicon; Silver; Sodium Chloride; Up-Regulation | 2015 |
Silicon induces resistance to the brown spot fungus Cochliobolus miyabeanus by preventing the pathogen from hijacking the rice ethylene pathway.
Although numerous studies have shown the ability of silicon (Si) to mitigate a wide variety of abiotic and biotic stresses, relatively little is known about the underlying mechanism(s). Here, we have investigated the role of hormone defense pathways in Si-induced resistance to the rice brown spot fungus Cochliobolus miyabeanus. To delineate the involvement of multiple hormone pathways, a multidisciplinary approach was pursued, combining exogenous hormone applications, pharmacological inhibitor experiments, time-resolved hormone measurements, and bioassays with hormone-deficient and/or -insensitive mutant lines. Contrary to other types of induced resistance, we found Si-induced brown spot resistance to function independently of the classic immune hormones salicylic acid and jasmonic acid. Our data also rule out a major role of the abscisic acid (ABA) and cytokinin pathways, but suggest that Si mounts resistance to C. miyabeanus by preventing the fungus from hijacking the rice ethylene (ET) machinery. Interestingly, rather than suppressing rice ET signaling per se, Si probably interferes with the production and/or action of fungal ET. Together our findings favor a scenario whereby Si induces brown spot resistance by disarming fungal ET and argue that impairment of pathogen virulence factors is a core resistance mechanism underpinning Si-induced plant immunity. Topics: Ascomycota; Disease Resistance; Ethylenes; Host-Pathogen Interactions; Oryza; Plant Diseases; Plant Growth Regulators; Plant Leaves; Signal Transduction; Silicon | 2015 |
Study of the Edge-on Self-Assembly of Axially Substituted Silicon(IV) Phthalocyanine Derivatives in a Template on the HOPG Surface.
Molecular conformation is an important issue related to the self-assembly architecture and property. The self-assembly of silicon(IV) phthalocyanines covalently linked to the 5-N-cytidine or 4-carboxyphenoxy moiety at the axial positions, namely, SiPc(NC)2 and SiPc(CP)2, respectively, has been studied by means of scanning tunneling microscopy (STM) at the solid-liquid interface. The intermolecular axial hydrogen bonding in combination with the stabilizing role of the TCDB template brings about supramolecular self-assembled structures of silicon(IV) phthalocyanines in an edge-on orientation. Two pyridine compounds, 4,4'-bipyridine (BPY) and 1,2-di(4-pyridyl)ethylene (DPE), can tune the supramolecular structure, leading to interestingly axial self-assemblies of SiPc(CP)2 with BPY and DPE in an edge-on manner by hydrogen bonding. The results indicate that the axial substituents and the axial ligands can regulate and precisely control the conformation and arrangement of the phthalocyanine moiety on the graphite surface. Topics: Carbon; Ethylenes; Graphite; Indoles; Isoindoles; Models, Molecular; Molecular Conformation; Pyridines; Silicon; Surface Properties | 2015 |
Unusual two-stage kinetics of ethylene adsorption on Si(100) unraveled by surface optical spectroscopy and Monte Carlo simulation.
The adsorption of ethylene on a Si(100)-2×1 surface in an ultrahigh vacuum has been monitored at room temperature by use of real-time surface differential reflectance spectroscopy, which clearly demonstrated that the adsorption follows a two-stage process. About half a monolayer is obtained for 1 L, while the second stage is much slower, yielding the complete monolayer for an exposure of ∼400 L. The kinetics over the full range has been successfully reproduced by a Monte Carlo calculation. The key point of this two-stage adsorption kinetic lies in the reduced adsorption probability (by a factor of several hundreds) on the Si dimers, neighbors of dimers which have already reacted, with respect to the adsorption probability on isolated dimers. This new kind of adsorption kinetics, due to a repulsion between already adsorbed molecules and additional molecules impinging on the surface, makes it a textbook case for a "cooperative" adsorption process. Topics: Adsorption; Ethylenes; Kinetics; Models, Chemical; Models, Molecular; Monte Carlo Method; Optics and Photonics; Silicon; Spectrum Analysis | 2013 |
Application of the protection/deprotection strategy to the science of porous materials.
Topics: Ethylenes; Materials Testing; Membranes, Artificial; Particle Size; Polymers; Porosity; Science; Silicon; Surface Properties | 2011 |
Vibrational characterization of ethylene adsorption and its thermal evolution on Si(001)-(2 x 1): identification of majority and minority species.
The vibrational and structural properties of a single-domain Si(001)-(2 x 1) surface upon ethylene adsorption have been studied by density functional cluster calculations and high-resolution electron energy loss spectroscopy. The detailed analysis of the theoretically and the experimentally determined vibrational frequencies reveals two coexisting adsorbate configurations. The majority species consist of ethylene molecules which are di-sigma bonded to the two Si atoms of a single Si-Si dimer. The local symmetry of this adsorption complex is reduced to C(2) for ethylene saturation coverage as determined by surface selection rules for the vibrational excitation process. The symmetry reduction includes the rotation of the C-C bond around the surface normal and the twist of the methylene groups around the C-C axis. Experimentally, 17 ethylene-derived modes are found and assigned for the majority and the minority species based on a comparison with calculated vibrational frequencies. The minority species which can account up to 14% of the total ethylene coverage is spectroscopically identified for the first time. It is assigned to ethylene molecules di-sigma bonded to two adjacent Si-Si dimers (in an end-bridge configuration). One part of the minority species desorbs molecularly at 665 K, about 50 K higher than the majority species, whereas the remaining part dissociates to adsorbed acetylene at temperatures around 630 K. For the latter, a di-sigma end-bridge like bonding configuration is proposed based on a comparison with vibrational data for adsorbed acetylene on Si(100)-(2 x 1). Topics: Adsorption; Computer Simulation; Ethylenes; Silicon; Spectrum Analysis; Surface Properties; Temperature; Vibration | 2010 |
Structural and theoretical investigation of 2-iminoimidazolines--carbene analogues of iminophosphoranes.
The preparation of 2-iminoimidazolines - has been accomplished by the Staudinger reaction of the carbenes 1,3-di-tert-butylimidazolin-2-ylidene (), 1,3-diisopropyl-4,5-dimethylimidazolin-2-ylidene (), 1,3-diisopropylimidazolin-2-ylidene (), 1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene (), 1,3-bis(2,6-diisopropylphenylimidazolin-2-ylidene () and 1,3,4,5-tetramethylimidazolin-2-ylidene () with trimethylsilyl azide (Me3SiN3) followed by desilylation of the resulting 2-trimethylsilyliminoimidazolines -. The X-ray crystal structures of and have been established, revealing C1-N1-Si1 angles that are more obtuse than the corresponding P-N-Si angles observed in related trimethylsilyl iminophosphoranes. Together with , the disilylated side product 1,3-diisopropyl-2-(trimethylsilylimino)-4-trimethylsilylimidazoline () has been isolated and structurally characterized. Cleavage of the N-Si bonds in and formation of is easily achieved by stirring in methanol. The molecular structures of the 2-iminoimidazolines are reported, indicating that the structural parameters are best described by non-ylidic resonance structures and that electron delocalization within the imidazole heterocycle does not play a crucial role in these imine systems. Compound forms a head-to-head dimer in the solid state via weak intermolecular N-H...N contacts, which have additionally been characterized by means of compliance constants. To further analyze the electronic structure of these imines in comparison to related guanidine ligands, the proton affinities (PAs) of the model compounds 2-imino-1,3-dimethylimidazoline (), 2-imino-1,3-dimethylimidazolidine () and tetramethylguanidine () have been calculated by means of density functional theory. Finally, the charge distribution in - and the relative contribution of relevant resonance structures have been determined using natural bond orbitals (NBO) and natural resonance theory (NRT). Topics: Catalysis; Crystallography, X-Ray; Ethylenes; Guanidine; Hydrocarbons; Hydrogen Bonding; Imidazolines; Imines; Ligands; Methane; Methanol; Models, Chemical; Nitrogen; Organometallic Compounds; Oxygen; Phosphoranes; Silicon; Sulfur; Titanium; Trimethylsilyl Compounds | 2007 |
Nonradical mechanisms for the uncatalyzed thermal functionalization of silicon surfaces by alkenes and alkynes: a density functional study.
We propose a new concerted mechanism for the uncatalyzed hydrosilylation of terminal alkenes and alkynes, alternative to the conventional radical-based mechanism. Density functional calculations have been carried out on these and on previously proposed alternative mechanisms for the hydrosilylation of ethylene and acetylene by suitable finite size clusters as models of the thermal functionalization of -SiH3, =SiH2, and [triple bound] SiH groups in flat Si(100) and Si(111) and porous silicon surfaces by alkenes and alkynes. For each step involved in the considered hydrosilylation pathways, we optimized the geometries of reactants and products and located the corresponding transition states. The calculated activation energies for the concerted pathways of ethylene and acetylene are, respectively, 57.6 and 60.9 kcal mol(-1) on -SiH3 and in the ranges 62-63 and 58-61 kcal mol-1 on =SiH2 and 64-66 and 56-61 kcal mol(-1) on SiH. These values are much lower than the activation energies calculated for the corresponding homolytic dissociation of the Si-H bond, which is the preliminary step in the radical path, 85.6, 82-83, and 79-81 kcal mol(-1), respectively, for -SiH3, =SiH2, and [triple bound] SiH groups. Our results thus suggest that the thermal hydrosilylation of alkenes and alkynes on silicon surfaces, for which a radical-based mechanism is currently accepted, may occur through a concerted mechanism. Topics: Acetylene; Alkenes; Alkynes; Chemistry; Ethylenes; Free Radicals; Hydrogen; Hydrogen Bonding; Models, Molecular; Molecular Conformation; Normal Distribution; Protein Conformation; Silicon; Software; Surface Properties | 2006 |
Biological coating of EPDM-membranes of fine bubble diffusers.
Biological coatings on EPDM-membranes are a problem on many large wastewater treatment plants, as the oxygen supply of the micro-organisms is no longer guaranteed. Investigations prove that the pressure loss and the Shore A-hardness of the EPDM-membranes increase while on the other hand their softener content decreases accordingly. The detected coatings on the membrane surfaces and in the slits or holes of the membranes show extra-cellular organic substances (EPS), which, compared with fibrillar/filamented EPS usually found on surfaces in wastewater treatment plants, are viscous to a much greater extent. As, besides primary organic parts (carbon), the coatings on the membranes as well as in the slits or holes also consist of inorganic constituents (magnesium, silicon, and others), the authors assume that, the separating agent (and also inactive filler) talcum (magnesium silicate), used when producing the membranes, supports at least a first beginning of the coating. Superfine dust constituents and fibres, input via the compressed air, will build up inside the coating and consequently lead to a gradual clogging of the holes or slits. Besides chemical cleaning measures, the exchange of the EPDM-membranes against membranes of silicone would also be a possible measure to solve this problem. The market will decide, if, in the future, a cleaning or an exchange of the EPDM-membranes against membranes of silicone will be applied, but it has to be considered that the loss of softener is irreversible. Topics: Alkenes; Biological Products; Diffusion; Ethylenes; Filtration; Industrial Waste; Magnesium; Magnesium Silicates; Materials Testing; Membranes, Artificial; Organic Chemicals; Oxygen; Pressure; Rubber; Sewage; Silicon; Silicones; Time Factors; Waste Disposal, Fluid; Water Pollutants; Water Purification | 2004 |