silicon has been researched along with dimethyldioctadecylammonium* in 2 studies
2 other study(ies) available for silicon and dimethyldioctadecylammonium
Article | Year |
---|---|
Adsorption of cationic lipid bilayer onto flat silicon wafers: effect of ion nature and concentration.
The effect of monovalent salt nature and concentration over a range of low ionic strengths (0-10 mM LiCl, NaCl, KCl, or CsCl) and at two different pH values (6.3 and 10.0) on adsorption of dioctadecyldimethylammonium bromide (DODAB) bilayer fragments (BF) onto flat SiO(2) surfaces was systematically evaluated by means of in situ ellipsometry. High-affinity adsorption isotherms fitted by the Langmuir model indicated that adsorption maxima were consistent with bilayer deposition only around 10 mM monovalent salt at both pH values. In pure water, the mean thickness of the DODAB adsorbed layer was close to zero with bilayer deposition taking place only around 10 mM ionic strength. In the presence of 10 mM CsCl or LiCl, the highest and the lowest affinity constants for DODAB adsorption onto SiO(2) were, respectively, obtained consistently with the expected facility of cation exchange at the surface required for DODAB adsorption. The cation more tightly bound to the solid surface should be Li(+), which would present the largest resistance to displacement by the DODAB cation, whereas the less tightly bound cation should be Cs(+) due to its largest ionic radius and lowest charge density. In other words, DODAB adsorption proceeds in accordance with charge density on the solid surface, which depends on the nature and concentration of bound counterions as well as DODAB cation ability to displace them. AFM images show a very smooth DODAB film adsorbed onto the surface in situ with a large frequency of BF auto-association from their edges. The present results for flat surfaces entirely agree with previous data from our group for DODAB adsorption onto silica particles. Topics: Adsorption; Aluminum Silicates; Cations; Lipid Bilayers; Microscopy, Atomic Force; Quaternary Ammonium Compounds; Silicon; Thermodynamics | 2006 |
Interaction of cationic lipid vesicles with model cell membranes--as determined by neutron reflectivity.
Transfection of cells by DNA (for the purposes of gene therapy) can be effectively engineered through the use of cationic lipid/DNA "lipoplexes", although the transfection efficiency of these lipoplexes is sensitive to the neutral "helper" lipid included. Here, neutron reflectivity has been used to investigate the role of the helper lipid present during the interaction of cationic lipid vesicles with model cell membranes. Dimethyldioctadecylammonium bromide (DDAB) vesicles were formed with two different helper lipids, 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) and cholesterol, and the interaction of these vesicles with a supported phospholipid bilayer was determined. DOPE-containing vesicles were found to interact faster with the membrane than those containing cholesterol, and vesicles containing either of the neutral helper lipids were found to interact faster than when DDAB alone was present. The interaction between the vesicles and the membrane was characterized by an exchange of lipid between the membrane and the lipid aggregates in solution; the deposition of vesicle bilayers on the surface of the membrane was not apparent. Topics: Cations; Cell Membrane; Cholesterol; Lipid Bilayers; Neutrons; Phosphatidylethanolamines; Quaternary Ammonium Compounds; Scattering, Radiation; Silicon; Surface Properties | 2005 |