silicon and chlorophyll-b

silicon has been researched along with chlorophyll-b* in 5 studies

Other Studies

5 other study(ies) available for silicon and chlorophyll-b

ArticleYear
Silicon and salicylic acid confer high-pH stress tolerance in tomato seedlings.
    Scientific reports, 2019, 12-24, Volume: 9, Issue:1

    Alkalinity is a known threat to crop plant growth and production, yet the role of exogenous silicon (Si) and salicylic acid (SA) application has been largely unexplored. Here, we sought to understand the beneficial impacts of Si and SA on tomato seedlings during high-pH (9.0) stress. Results showed that Si- and SA-treated plants displayed higher biomass, chlorophyll contents, relative leaf water and better root system than none-treated plants under alkaline conditions. Both Si and SA counteracted the alkaline stress-induced oxidative damage by lowering the accumulation of reactive oxygen species and lipid peroxidation. The major antioxidant defence enzyme activities were largely stimulated by Si and SA, and these treatments caused significantly increased K

    Topics: Abscisic Acid; Antioxidants; Biomass; Chlorophyll; Chlorophyll A; Hydrogen-Ion Concentration; Lipid Peroxidation; Oxidative Stress; Plant Leaves; Plant Roots; Plant Shoots; Rhizosphere; Salicylic Acid; Seedlings; Silicon; Soil; Solanum lycopersicum; Stress, Physiological

2019
Silicon-moderated K-deficiency-induced leaf chlorosis by decreasing putrescine accumulation in sorghum.
    Annals of botany, 2016, Volume: 118, Issue:2

    Although silicon (Si) has been widely reported to alleviate plant nutrient deficiency, the alleviating effect of Si on potassium (K) deficiency and its underlying mechanism are poorly understood. Here, we examined whether Si-regulated putrescine (Put) metabolisms are involved in Si-alleviated K deficiency.. Sorghum seedlings were grown in K deficiency solution with and without Si for 15 d. The influence of K deficiency and Si on leaf chlorosis symptoms, K(+) concentration, polyamine (PA) levels, amine oxidase activities, the transcription of Put synthesis genes, antioxidant enzyme activities and H2O2 accumulation were measured.. Under K-sufficient conditions, plant growth was not affected by Si application. Si application significantly alleviated the growth inhibition induced by K-deficient stress, however. K deficiency induced leaf chlorosis and reduction in several leaf chlorosis-related metrics, including photosynthesis, efficiency of photosystem II photochemistry, chlorophyll content and chlorophyll a/b ratio; all of these changes were moderated by Si application. Si application did not influence the K(+) concentration in leaves under K-sufficient or K-deficient conditions. It did, however, decrease the excessive accumulation of Put that was otherwise induced by K deficiency. Simultaneously, Put synthesis gene transcription and activation of amine oxidases were down-regulated by Si application under K-deficient conditions. In addition, Si reduced K-deficiency-enhanced antioxidant enzyme activities and decreased K-deficiency-induced H2O2 accumulation.. These results indicate that Si application could reduce K-deficiency-induced Put accumulation by inhibiting Put synthesis and could decrease H2O2 production via PA oxidation. Decreased H2O2 accumulation contributes to the alleviation of cell death, thereby also alleviating K-deficiency-induced leaf chlorosis and necrosis.

    Topics: Antioxidants; Carboxy-Lyases; Chlorophyll; Chlorophyll A; Hydrogen Peroxide; Photosynthesis; Plant Leaves; Plant Proteins; Polyamines; Potassium Deficiency; Putrescine; Seedlings; Silicon; Sorghum

2016
Leaf gas exchange and chlorophyll a fluorescence in wheat plants supplied with silicon and infected with Pyricularia oryzae.
    Phytopathology, 2014, Volume: 104, Issue:2

    This study investigated the effect of silicon (Si) on the photosynthetic gas exchange parameters (net CO2 assimilation rate [A], stomatal conductance to water vapor [gs], internal CO2 concentration [Ci], and transpiration rate [E]) and chlorophyll fluorescence a parameters (maximum quantum quenching [Fv/Fm and Fv'/Fm'], photochemical [qP] and nonphotochemical [NPQ] quenching coefficients, and electron transport rate [ETR]) in wheat plants grown in a nutrient solution containing 0 mM (-Si) or 2 mM (+Si) Si and noninoculated or inoculated with Pyricularia oryzae. Blast severity decreased due to higher foliar Si concentration. For the inoculated +Si plants, A, gs, and E were significantly higher in contrast to the inoculated -Si plants. For the inoculated +Si plants, significant differences of Fv/Fm between the -Si and +Si plants occurred at 48, 96, and 120 h after inoculation (hai) and at 72, 96, and 120 hai for Fv'/Fm'. The Fv/Fm and Fv'/Fm', in addition to total chlorophyll concentration (a + b) and the chlorophyll a/b ratio, significantly decreased in the -Si plants compared with the +Si plants. Significant differences between the -Si and +Si inoculated plants occurred for qP, NPQ, and ETR. The supply of Si contributed to decrease blast severity in addition to improving gas exchange performance and causing less dysfunction at the photochemical level.

    Topics: Carbon Dioxide; Chlorophyll; Chlorophyll A; Magnaporthe; Photosynthesis; Photosystem II Protein Complex; Plant Diseases; Plant Leaves; Plant Stomata; Plant Transpiration; Silicon; Triticum

2014
Silicified structures affect leaf optical properties in grasses and sedge.
    Journal of photochemistry and photobiology. B, Biology, 2014, Jan-05, Volume: 130

    Silicon (Si) is an important structural element that can accumulate at high concentrations in grasses and sedges, and therefore Si structures might affect the optical properties of the leaves. To better understand the role of Si in light/leaf interactions in species rich in Si, we examined the total Si and silica phytoliths, the biochemical and morphological leaf properties, and the reflectance and transmittance spectra in grasses (Phragmites australis, Phalaris arundinacea, Molinia caerulea, Deschampsia cespitosa) and sedge (Carex elata). We show that these grasses contain >1% phytoliths per dry mass, while the sedge contains only 0.4%. The data reveal the variable leaf structures of these species and significant differences in the amount of Si and phytoliths between developing and mature leaves within each species and between grasses and sedge, with little difference seen among the grass species. Redundancy analysis shows the significant roles of the different near-surface silicified leaf structures (e.g., prickle hairs, cuticle, epidermis), phytoliths and Si contents, which explain the majority of the reflectance and transmittance spectra variability. The amount of explained variance differs between mature and developing leaves. The transmittance spectra are also significantly affected by chlorophyll a content and calcium levels in the leaf tissue.

    Topics: Calcium; Carex Plant; Carotenoids; Chlorophyll; Chlorophyll A; Optical Phenomena; Plant Leaves; Poaceae; Silicon; Ultraviolet Rays

2014
[Effects of silicon on photosynthetic characteristics and activity of antioxidant enzymes in continuous-cropped cucumber seedlings].
    Ying yong sheng tai xue bao = The journal of applied ecology, 2014, Volume: 25, Issue:6

    The effects of spraying exogenous silicon (Si) (0, 1, 2, 3, 4 and 5 mmol L(-1)) on the growth, photosynthetic characteristics and activity of antioxidant enzymes in continuous-cropped 'Jinyan No. 4' cucumber seedlings were studied. The results showed that with the application of 1-3 mmol x L(-1) Si, electrolyte leakage (EL) and malondialdehyde (MDA) content in leaves were significantly decreased, while the contents of chlorophyll a (Chl a), chlorophyll b (Chl b), carotenoids (Car), chlorophyll (a+b) and photosynthetic rate (Pn) in leaves were significantly improved, the activities of superoxidase (SOD), peroxidase (POD), catalase (CAT) and ascorbic acid peroxidase (APX) were significantly increased, and the plant height, stem diameter and dry mass accumulation of cucumber seedlings were promoted. Compared with the low Si concentrations, excessive Si (4-5 mmol x L(-1)) resulted in higher EL and MDA, which were still lower than that in control, decreased the antioxidant enzymes activity and photosynthesis, and inhibited the growth of cucumber seedlings. These findings indicated that exogenous Si could enhance the capacity of scavenging active oxygen species and improve photosynthesis, protect cucumber seedlings from the lipid peroxidation, and increase the resistance to continuous-cropped cucumber obstacle. The optimal silicon concentration was 2 mmol x L(-1).

    Topics: Antioxidants; Carotenoids; Catalase; Chlorophyll; Chlorophyll A; Cucumis sativus; Lipid Peroxidation; Malondialdehyde; Oxidation-Reduction; Peroxidases; Photosynthesis; Plant Leaves; Reactive Oxygen Species; Seedlings; Silicon

2014