silicon and betadex

silicon has been researched along with betadex* in 4 studies

Other Studies

4 other study(ies) available for silicon and betadex

ArticleYear
Facile synthesis of per(6-O-tert-butyldimethylsilyl)-α-, β-, and γ-cyclodextrin as protected intermediates for the functionalization of the secondary face of the macrocycles.
    Nature protocols, 2021, Volume: 16, Issue:2

    Per(6-O-tert-butyldimethylsilyl)-α-, β- and γ-cyclodextrin derivatives are well-known as synthetic intermediates that enable the selective mono-, partial, or perfunctionalization of the secondary face of the macrocycles. Although silylation of the primary rim is readily achieved by treatment with tert-butyldimethylsilyl chloride in the presence of pyridine (either alone or mixed with a co-solvent), the reaction typically results in a mixture containing both under- and oversilylated byproducts that are difficult to remove. To address this challenge in preparing a pure product in high yield, we describe an approach that centers on the addition of a controlled excess of silylating agent to avoid the presence of undersilylated species, followed by the removal of oversilylated species by column chromatography elution with carefully designed solvent mixtures. This methodology works well for 6-, 7-, and 8-member rings (α-, β-, and γ-cyclodextrins, respectively) and has enabled us to repeatedly prepare up to ⁓35 g of ≥98% pure product (as determined by HPLC) in 3 d. We also provide procedures for lower-scale reactions, as well as an example of how the β-cyclodextrin derivative can be used for functionalization of the secondary face of the molecule.

    Topics: beta-Cyclodextrins; Cyclodextrins; gamma-Cyclodextrins; Molecular Structure; Organosilicon Compounds; Silicon; Stereoisomerism

2021
Hyperbranched β-cyclodextrin polymer as an effective multidimensional binder for silicon anodes in lithium rechargeable batteries.
    Nano letters, 2014, Feb-12, Volume: 14, Issue:2

    Polymeric binders play an important role in electrochemical performance of high-capacity silicon (Si) anodes that usually suffer from severe capacity fading due to unparalleled volume change of Si during cycling. In an effort to find efficient polymeric binders that could mitigate such capacity fading, herein, we introduce polymerized β-cyclodextrin (β-CDp) binder for Si nanoparticle anodes. Unlike one-dimensional binders, hyperbranched network structure of β-CDp presents multidimensional hydrogen-bonding interactions with Si particles and therefore offers robust contacts between both components. Even the Si nanoparticles that lost the original contacts with the binder during cycling recover within the multidimensional binder network, thus creating a self-healing effect. Utilizing these advantageous features, β-CDp-based Si electrode shows markedly improved cycling performance compared to those of other well-known binder cases, especially when combined with linear polymers at an appropriate ratio to form hybrid binders.

    Topics: beta-Cyclodextrins; Electric Power Supplies; Electrodes; Energy Transfer; Equipment Design; Equipment Failure Analysis; Lithium; Polymers; Silicon

2014
Porous silicon-cyclodextrin based polymer composites for drug delivery applications.
    Carbohydrate polymers, 2014, Sep-22, Volume: 110

    One of the main applications of porous silicon (PSi) in biomedicine is drug release, either as a single material or as a part of a composite. PSi composites are attractive candidates for drug delivery systems because they can display new chemical and physical characteristics, which are not exhibited by the individual constituents alone. Since cyclodextrin-based polymers have been proven efficient materials for drug delivery, in this work β-cyclodextrin-citric acid in-situ polymerization was used to functionalize two kinds of PSi (nanoporous and macroporous). The synthesized composites were characterized by microscopy techniques (SEM and AFM), physicochemical methods (ATR-FTIR, XPS, water contact angle, TGA and TBO titration) and a preliminary biological assay was performed. Both systems were tested as drug delivery platforms with two different model drugs, namely, ciprofloxacin (an antibiotic) and prednisolone (an anti-inflammatory), in two different media: pure water and PBS solution. Results show that both kinds of PSi/β-cyclodextrin-citric acid polymer composites, nano- and macro-, provide enhanced release control for drug delivery applications than non-functionalized PSi samples.

    Topics: Anti-Bacterial Agents; Anti-Inflammatory Agents; beta-Cyclodextrins; Ciprofloxacin; Citric Acid; Drug Carriers; Drug Delivery Systems; Polymerization; Porosity; Prednisolone; Silicon

2014
Fabrication of a photocontrolled surface with switchable wettability based on host-guest inclusion complexation and protein resistance.
    Langmuir : the ACS journal of surfaces and colloids, 2014, Aug-12, Volume: 30, Issue:31

    A novel surface-modification strategy has been developed for the construction of a photocontrolled silicon wafer surface with switchable wettability based on host-guest inclusion complexation. The silicon wafer was first modified by guest molecule azobenzene (Azo) via a silanization reaction. Subsequently, a series of polymers with different polarities were attached to host molecule β-cyclodextrin (β-CD) to prepare β-CD-containing hemitelechelic polymers via click chemistry. Finally, a photocontrolled silicon wafer surface modified with polymers was fabricated by inclusion complexation between β-CD and Azo, and the surface properties of the substrate are dependent on the polymers we used. The elemental composition, surface morphology, and hydrophilic/hydrophobic property of the modified surfaces were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscope, and contact angle measurements, respectively. The antifouling property of the PEG-functionalized surface was evaluated by a protein adsorption assay using bovine serum albumin, which was also characterized by XPS. The results demonstrate that the surface modified with PEG possesses good protein-resistant properties.

    Topics: Animals; Azo Compounds; beta-Cyclodextrins; Cattle; Click Chemistry; Particle Size; Photochemical Processes; Serum Albumin, Bovine; Silicon; Surface Properties; Wettability

2014