silicon and beta-glycerophosphoric-acid

silicon has been researched along with beta-glycerophosphoric-acid* in 1 studies

Other Studies

1 other study(ies) available for silicon and beta-glycerophosphoric-acid

ArticleYear
Effects of exogenous phosphorus and silicon on osteoblast differentiation at the interface with bioactive ceramics.
    Journal of biomedical materials research. Part A, 2010, Dec-01, Volume: 95, Issue:3

    In this study, we have investigated the effects of dissolved phosphorus and silicon on osteoblast differentiation in vitro. Neonatal rat calvarial osteoblasts were seeded on silica-calcium phosphate composites (SCPCS), hydroxyapatite (HA-200), and tissue culture polystyrene (TCPS) and incubated over 4 days in media containing 0 {minimal essential medium [MEM] (-)} or 3 mM β-glycerophosphate [MEM (+)]. Inductively coupled plasma analysis showed that P-content in original MEM (+) was 225% higher than that in MEM (-). Moreover, P-content in MEM (+) significantly increased to 3.4-4.4 mM and 3.6-4.7 mM after 2 and 4 days incubation with SCPC, respectively, owing to material dissolution and exogenous phosphate supplementation. In contrast, P-content in MEM (+) showed no change upon incubation with HA or TCPS. The P-content in MEM (-) incubated with SCPC was considerably lower than that in MEM (+). SCPC exhibited controlled Si-release in cell culture media [MEM (-) or MEM (+)], with Si-rich SCPC showing a significantly greater dissolution than Si-poor SCPC. Moreover, SCPC, unlike HA, demonstrated a cell- and solution-mediated dissolution over 4 days. Quantitative real-time PCR showed that in MEM (-), osteocalcin and osteopontin mRNA expression on Si-rich SCPC was significantly greater than that on HA, suggesting that Si plays an important role in enhancing bone-cell differentiation. However, osteoblast phenotypic expression on SCPC was significantly decreased after 4 days incubation in MEM (+), indicating that sustained exposure to elevated P-levels in the media can downregulate osteoblast function. Our results demonstrate that the controlled dissolution of SCPC provides a natural stimulus for bone-cell differentiation in vitro and could obviate the need of exogenous phosphate supplementation.

    Topics: Animals; Animals, Newborn; Cell Culture Techniques; Cell Differentiation; Cells, Cultured; Ceramics; Gene Expression; Glycerophosphates; Osteoblasts; Phosphorus; Rats; Silicon; Tissue Scaffolds

2010