sildenafil-citrate has been researched along with acetovanillone* in 3 studies
3 other study(ies) available for sildenafil-citrate and acetovanillone
Article | Year |
---|---|
Sildenafil restores endothelial function in the apolipoprotein E knockout mouse.
Atherosclerosis is an inflammatory process of the arterial walls and is initiated by endothelial dysfunction accompanied by an imbalance in the production of reactive oxygen species (ROS) and nitric oxide (NO). Sildenafil, a selective phosphodiesterase-5 (PDE5) inhibitor used for erectile dysfunction, exerts its cardiovascular effects by enhancing the effects of NO. The aim of this study was to investigate the influence of sildenafil on endothelial function and atherosclerosis progression in apolipoprotein E knockout (apoE-/-) mice.. ApoE-/- mice treated with sildenafil (Viagra®, 40 mg/kg/day, for 3 weeks, by oral gavage) were compared to the untreated apoE-/- and the wild-type (WT) mice.Aortic rings were used to evaluate the relaxation responses to acetylcholine (ACh) in all of the groups. In a separate set of experiments, the roles of NO and ROS in the relaxation response to ACh were evaluated by incubating the aortic rings with L-NAME (NO synthase inhibitor) or apocynin (NADPH oxidase inhibitor). In addition, the atherosclerotic lesions were quantified and superoxide production was assessed.. Sildenafil restored the vasodilator response to acetylcholine (ACh) in the aortic rings of the apoE-/- mice. Treatment with L-NAME abolished the vasodilator responses to ACh in all three groups of mice and revealed an augmented participation of NO in the endothelium-dependent vasodilation in the sildenafil-treated animals. The normalized endothelial function in sildenafil-treated apoE-/- mice was unaffected by apocynin highlighting the low levels of ROS production in these animals. Moreover, morphological analysis showed that sildenafil treatment caused approximately a 40% decrease in plaque deposition in the aorta.. This is the first study demonstrating the beneficial effects of chronic treatment with sildenafil on endothelial dysfunction and atherosclerosis in a model of spontaneous hypercholesterolemia. These data indicate that the main mechanism of the beneficial effect of sildenafil on the endothelial function appears to involve an enhancement of the NO pathway along with a reduction in oxidative stress. Topics: Acetophenones; Animals; Apolipoproteins E; Endothelium, Vascular; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; NG-Nitroarginine Methyl Ester; Nitric Oxide; Piperazines; Purines; Reactive Oxygen Species; Sildenafil Citrate; Sulfones | 2013 |
Superoxide anion production by NADPH oxidase plays a major role in erectile dysfunction in middle-aged rats: prevention by antioxidant therapy.
INTRODUCTION.: Prevalence of erectile dysfunction (ED) increases progressively with aging, but the ED pathophysiology at its early stages is still poorly investigated. AIM.: This study aimed to evaluate the functional and molecular alterations of erectile function at middle age, focusing on the contribution of oxidative stress in erectile tissue for the ED. METHODS.: Young (3.5-month) and middle-aged (10-month) male Wistar rats were used. Rat corpus cavernosum (RCC) was dissected free and mounted in 10-mL organ baths containing Krebs solution. Intracavernosal pressure (ICP) in anesthetized rats was evaluated. MAIN OUTCOME MEASURES.: Concentration-response curves to endothelium-dependent and endothelium-independent agents, as well as to electrical field stimulation (EFS), were obtained in RCC strips. Measurement of cyclic guanosine monophosphate (cGMP) and expressions of neuronal nitric oxide synthase (nNOS) and endothelial NOS (eNOS), gp91(phox) and superoxide dismutase-1 (SOD-1) expressions in RCC were evaluated. RESULTS.: ICP was significantly reduced in middle-aged compared with young rats. RCC relaxations to acetylcholine (10(-8) to 10(-2) M), sodium nitroprusside (10(-8) to 10(-2) M), sildenafil (10(-9) to 10(-5) M), BAY 41-2272 (10(-9) to 10(-5) M), and EFS (4-32 Hz) were decreased in middle-aged group, which were nearly normalized by apocynin (NADPH oxidase inhibitor; 10(-4) M) or SOD (75 U/mL). Prolonged treatment with apocynin (85 mg/rat/day, 4 weeks) also restored the impaired relaxations in middle-aged rats. Relaxations to 8-bromoguanosine 3',5'-cyclic monophosphate sodium salt (8-Br-cGMP; 10(-8) to 3 × 10(-4) M) remained unchanged between groups. Basal and stimulated cGMP production were lower in middle-aged group, an effect fully restored by apocynin and SOD. Protein expression of nNOS and phosphorylated eNOS (p-eNOS) (Ser-1177) reduced, whereas gp(91phox) mRNA expression increased in RCC from middle-aged rats. CONCLUSIONS.: ED in middle-aged rats is associated with decreased NO bioavailability in erectile tissue due to upregulation of NADPH oxidase subunit gp91(phox) and downregulation of nNOS/p-eNOS. Antioxidant therapies may be a good pharmacological approach to prevent ED at its early stages. Topics: Acetophenones; Acetylcholine; Aging; Animals; Blood Pressure; Cyclic GMP; Down-Regulation; Electric Stimulation; Endothelium, Vascular; Enzyme Inhibitors; Erectile Dysfunction; Free Radical Scavengers; Male; Membrane Glycoproteins; Muscle Relaxation; NADPH Oxidase 2; NADPH Oxidases; Nitric Oxide Synthase; Nitroprusside; Penile Erection; Phosphodiesterase 5 Inhibitors; Piperazines; Purines; Pyrazoles; Pyridines; Rats; RNA, Messenger; Sildenafil Citrate; Sulfones; Superoxide Dismutase; Superoxide Dismutase-1; Up-Regulation; Vasodilator Agents | 2013 |
Effect of sildenafil citrate and a nitric oxide donating sildenafil derivative, NCX 911, on cavernosal relaxation and superoxide formation in hypercholesterolaemic rabbits.
Hypercholesterolaemia promotes erectile dysfunction through increased superoxide formation and negation of nitric oxide (NO) bioactivity in cavernosal tissue. The source of superoxide has not been clearly defined, however. Sildenafil (Viagra), the standard therapy for erectile dysfunction, may also be rendered more effective by the presence of an NO donor. One drug that intrinsically fulfils this criterion is sildenafil nitrate (NCX 911), an NO donating derivative of sildenafil. The objective of this study, therefore, was to determine the source of superoxide and its effect on erectile function in corpus cavernosum from hypercholesterolaemic rabbits and to determine whether NCX 911 confers an improvement over sildenafil citrate in this model. Hypercholesterolaemia elicited an increase in superoxide formation by rabbit cavernosal tissue and a reduction of carbachol-stimulated relaxation both of which were reversed by diphenylene iodonium chloride and apocynin (NADPH oxidase inhibitors). In response to sodium nitroprusside, hypercholesterolaemia also caused an attenuation of cavernosal relaxation which was not reversed with NADPH oxidase inhibitors. Both sildenafil citrate and NCX 911 significantly reversed impaired carbachol-stimulated relaxation and inhibited superoxide formation by cavernosal tissue from hypercholesterolaemic rabbits, NCX 911 being more potent. NCX 911 also augmented cavernosal cGMP levels, an effect blocked by the guanylyl cyclase inhibitor, 1H-{1,2,4}oxadiazolo {4,3-a}quinoxalin-1-one (ODQ). These data demonstrate that hypercholesterolaemia promotes erectile dysfunction through an augmentation of superoxide derived from NADPH oxidase in cavernosal tissue. It also indicates that NO donating sildenafil may be therapeutically more beneficial than conventional sildenafil in treating erectile dysfunction with an oxidative stress-related aetiology. Topics: Acetophenones; Allopurinol; Animals; Carbachol; Cyclic GMP; Dose-Response Relationship, Drug; Enzyme Inhibitors; Hypercholesterolemia; In Vitro Techniques; Male; Muscle Relaxation; NADPH Oxidases; NG-Nitroarginine Methyl Ester; Nitric Oxide Donors; Nitric Oxide Synthase; Nitroprusside; Onium Compounds; Oxadiazoles; Penis; Phosphodiesterase Inhibitors; Piperazines; Purines; Quinoxalines; Rabbits; Rotenone; Sildenafil Citrate; Sulfones; Superoxides; Uncoupling Agents; Xanthine Oxidase | 2005 |