sildenafil-citrate and 8-bromoguanosino-3--5--cyclic-monophosphorothioate

sildenafil-citrate has been researched along with 8-bromoguanosino-3--5--cyclic-monophosphorothioate* in 3 studies

Other Studies

3 other study(ies) available for sildenafil-citrate and 8-bromoguanosino-3--5--cyclic-monophosphorothioate

ArticleYear
Phosphodiesterase-5 inhibitor sildenafil prevents neuroinflammation, lowers beta-amyloid levels and improves cognitive performance in APP/PS1 transgenic mice.
    Behavioural brain research, 2013, Aug-01, Volume: 250

    Memory deficit is a marker of Alzheimer's disease (AD) that has been highly associated with the dysfunction of cyclic GMP (cGMP) signaling and an ongoing inflammatory process. Phosphodiesterase-5 (PDE5) inhibitors prevent the breakdown of cGMP and are currently studied as a possible target for cognitive enhancement. However, it is still unknown whether inhibition of PDE5 reversed β-amyloid peptide (Aβ)-induced neuroinflammation in APP/PS1 transgenic (Tg APP/PS1) mice. The present study evaluated the cognitive behaviors, inflammatory mediators, and cGMP/PKG/pCREB signaling in 15-month-old Tg APP/PS1 mice and age-matched wild-type (WT) mice that were treated with PDE5 inhibitor sildenafil and the inhibitor of cGMP-dependent protein kinase Rp-8-Br-PET-cGMPS. In comparison with WT mice, Tg APP/PS1 mice were characterized by impaired cognitive ability, neuroinflammatory response, and down-regulated cGMP signaling. Sildenafil reversed these memory deficits and cGMP/PKG/pCREB signaling dysfunction; it also reduced both the soluble Aβ1-40 and Aβ1-42 levels in the hippocampus. These effects of sildenafil were prevented by intra-hippocampal infusion of the Rp-8-Br-PET-cGMPS. These results suggest that sildenafil could restore cognitive deficits in Tg APP/PS1 mice by the regulation of PKG/pCREB signaling, anti-inflammatory response and reduction of Aβ levels.

    Topics: Alzheimer Disease; Amyloid beta-Peptides; Amyloid beta-Protein Precursor; Analysis of Variance; Animals; Cognition Disorders; Cyclic GMP; Cytokines; Disease Models, Animal; Dose-Response Relationship, Drug; Encephalitis; Exploratory Behavior; Humans; Mice; Mice, Inbred C57BL; Mice, Transgenic; Mutation; Phosphodiesterase 5 Inhibitors; Piperazines; Presenilin-1; Purines; Recognition, Psychology; RNA, Messenger; Sildenafil Citrate; Sulfones; Thionucleotides

2013
Investigating the role of protein kinase-G in the antidepressant-like response of sildenafil in combination with muscarinic acetylcholine receptor antagonism.
    Behavioural brain research, 2010, May-01, Volume: 209, Issue:1

    The cGMP/PK-G pathway plays a crucial role in neuroprotection and neurotrophin support, and is possibly involved in antidepressant action. Recently we reported on a novel antidepressant-like response following simultaneous administration of sildenafil (phosphodiesterase 5 (PDE5) inhibitor, thereby increasing cGMP levels), and atropine (muscarinic acetylcholine receptor antagonist) in the rat forced swim test (FST). However, it is unclear whether the antidepressant-like activity of sildenafil+atropine is mediated via the activation of PK-G, an important down-stream effector for cGMP, and whether this may target known pathways in antidepressant action. We investigated whether the antidepressant-like response of sildenafil+/-atropine could be reversed by Rp-8-Br-PET-cGMP, a PK-G inhibitor, and also whether a combination of 8-Br-cGMP (PK-G activator)+/-atropine would likewise be active in the FST, and whether this combination could be attenuated by a PK-G inhibitor. 8-Br-cGMP alone, but not sildenafil alone, reduced immobility and selectively increased swimming in the FST. The antidepressant-like action of sildenafil was only evident following co-administration of atropine, and selectively increased climbing behaviour. Importantly, PK-G inhibition prevented the antidepressant-like effects of both 8-Br-cGMP and the sildenafil/atropine combination. These results confirm cholinergic-cGMP-PK-G interactions in the antidepressant-like effects of sildenafil, putatively acting via noradrenergic mechanisms, whereas direct PK-G activation induces antidepressant-like effects that are associated with enhancement of serotonergic neurotransmission.

    Topics: Animals; Atropine; Behavior, Animal; Cyclic GMP; Cyclic GMP-Dependent Protein Kinases; Depression; Disease Models, Animal; Drug Administration Routes; Drug Interactions; Drug Therapy, Combination; Freezing Reaction, Cataleptic; Male; Muscarinic Antagonists; Phosphodiesterase Inhibitors; Piperazines; Purines; Rats; Rats, Sprague-Dawley; Sildenafil Citrate; Statistics, Nonparametric; Sulfones; Swimming; Thionucleotides

2010
Sildenafil citrate and sildenafil nitrate (NCX 911) are potent inhibitors of superoxide formation and gp91phox expression in porcine pulmonary artery endothelial cells.
    British journal of pharmacology, 2005, Volume: 146, Issue:1

    Acute respiratory distress syndrome (ARDS) is associated with increased superoxide (O(2)(*-)) formation in the pulmonary vasculature and negation of the bioavailability of nitric oxide (NO). Since NO inhibits NADPH oxidase expression through a cyclic GMP-mediated mechanism, sildenafil, a type V phosphodiesterase inhibitor, may be therapeutically effective in ARDS through an augmentation of NO-mediated inhibition of NADPH oxidase. Therefore, the effect of sildenafil citrate and NO-donating sildenafil (NCX 911) on O(2)(*-) formation and gp91(phox) (active catalytic subunit of NADPH oxidase) expression was investigated in cultured porcine pulmonary artery endothelial cells (PAECs). PAECs were incubated with 10 nM TXA(2) analogue, 9,11-dideoxy-9alpha,11alpha-methanoepoxy-prostaglandin F(2alpha) (U46619) (+/-sildenafil or NCX 911), for 16 h and O(2)(*-) formation measured spectrophometrically and gp91(phox) using Western blotting. The role of the NO-cGMP axis was studied using morpholinosydnonimine hydrochloride (SIN-1), the diethylamine/NO complex (DETA-NONOate), the guanylyl cyclase inhibitor, 1H-{1,2,4}oxadiazolo{4,3-a}quinoxalin-1-one (ODQ), and the protein kinase G inhibitor, 8-bromoguanosine-3',5'-cyclic monophosphorothioate, Rp-isomer (Rp-8-Br-cGMPS). NO release was studied using a fluorescence assay and O(2)(*-)-NO interactions by measuring nitrites. After a 16-h incubation with 10 nM U46619, both NCX 911 and sildenafil elicited a concentration-dependent inhibition of O(2)(*-) formation and gp91(phox) expression, NCX 911 being more potent (IC(50); 0.26 nM) than sildenafil citrate (IC(50); 1.85 nM). These inhibitory effects were reversed by 1 microM ODQ and 10 microM Rp-8-Br-cGMPS. NCX 911 stimulated the formation of cGMP in PAECs and generated NO in a cell-free system to a greater degree than sildenafil citrate. The inhibitory effect of sildenafil was augmented by 1 muM SIN-1 and blocked partially by the eNOS inhibitor 10 microM N(5)-(1-iminoethyl)-ornithine (L-NIO). Acutely, sildenafil and NCX 911 also inhibited O(2)(*-) formation, again blocked by 1 microM ODQ. NCX 911 reacted with O(2)(*-) generated by xanthine oxidase, an effect that was inhibited by superoxide dismutase (500 U ml(-1)). Since O(2)(*-) formation plays contributory role in ARDS, both sildenafil citrate and NCX 911 may be indicated for treating ARDS through suppression of NADPH oxidase expression and therefore of O(2)(*-) formation and preservation of NO bioavailability.

    Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Animals; Cells, Cultured; Cyclic GMP; Endothelial Cells; Guanylate Cyclase; Male; Membrane Glycoproteins; NADPH Oxidases; Nitric Oxide; Nitric Oxide Synthase; Ornithine; Oxadiazoles; Piperazines; Protein Kinase Inhibitors; Pulmonary Artery; Purines; Quinoxalines; Sildenafil Citrate; Sulfones; Superoxides; Swine; Thionucleotides

2005