shogaol has been researched along with gingerdione* in 4 studies
4 other study(ies) available for shogaol and gingerdione
Article | Year |
---|---|
Evaluation of the Herb-Drug Interaction (HDI) Potential of
Ginger is currently one of the most popular herbs commonly added to diverse foods, beverages, and dietary supplements. We evaluated the ability of a well-characterized ginger extract, and several of its phytoconstituents, to activate select nuclear receptors as well as modulate the activity of various cytochrome P450s and ATP-binding cassette (ABC) transporters because phytochemical-mediated modulation of these proteins underlies many clinically relevant herb-drug interactions (HDI). Our results revealed ginger extract activated the aryl hydrocarbon receptor (AhR) in AhR-reporter cells and pregnane X receptor (PXR) in intestinal and hepatic cells. Among the phytochemicals investigated, ( Topics: ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; Herb-Drug Interactions; Neoplasm Proteins; Zingiber officinale | 2023 |
In vitro antioxidant and anti-inflammatory activities of 1-dehydro-[6]-gingerdione, 6-shogaol, 6-dehydroshogaol and hexahydrocurcumin.
Hexahydrocurcumin, 1-dehydro-[6]-gingerdione, 6-dehydroshogaol and 6-shogaol were evaluated for their antioxidant and anti-inflammatory activities in the present study. The relative antioxidant potencies of ginger compounds decreased in similar order of 1-dehydro-[6]-gingerdione, hexahydrocurcumin>6-shogaol>6-dehydroshogaol in both 1,1-diphenyl-2-picyrlhydrazyl (DPPH) radical-scavenging and trolox equivalent antioxidant capacity (TEAC) assays. All tested compounds could attenuate lipopolysaccharide (LPS)-elicited increase of prostaglandin E2 (PGE(2)) in murine macrophages (RAW 264.7) in a concentration-dependent manner but hexahydrocurcumin of 7μM and 6-shogaol of 7μM. The strongest inhibitory effect was observed for 6-dehydroshogaol and 6-shogaol at 14μM with the inhibition of 53.3% and 48.9%, respectively. Furthermore, both 6-dehydroshogaol and 1-dehydro-[6]-gingerdione significantly suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins in a concentration-dependent fashion. These results contribute to our theoretical understanding of the potential beneficial effects of consuming ginger as a food and/or dietary supplement. Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Catechols; Cell Line; Curcumin; Cyclooxygenase 2; Guaiacol; Macrophages; Mice; Nitric Oxide Synthase Type II; Plant Extracts; Zingiber officinale | 2012 |
Modulation of macrophage functions by compounds isolated from Zingiber officinale.
Bioactivity-guided fractionation of Zingiber Officinale (zingiberaceae) led us to isolate 14 compounds, -gingerol ( 1), -gingerol ( 2), -gingerol ( 3), -gingerol ( 4), -paradol ( 5), -shogaol ( 6), -shogaol ( 7), 1-dehydro- -gingerdione ( 8), -gingerdione ( 9), hexahydrocurcumin ( 10), tetrahydrocurcumin ( 11), gingerenone A ( 12), 1,7-bis-(4' hydroxyl-3' methoxyphenyl)-5-methoxyhepthan-3-one ( 13), and methoxy- -gingerol ( 14). Using the RAW 264.7 cell line, the inhibitory effects on nitric oxide production induced by lipopolysaccharide and the stimulatory effects on phagocytosis of these compounds were evaluated. Compounds 7, 8, and 9 significantly decreased lipopolysaccharide-induced nitric oxide production, and compounds 7 and 8 significantly reduced inducible nitric oxide synthase expression. Among them, compound 8 also showed significant stimulatory effects on phagocytosis. Topics: Animals; Catechols; Cell Line; Cell Survival; Diarylheptanoids; Fatty Alcohols; Female; Guaiacol; Lipopolysaccharides; Macrophages; Mice; Molecular Structure; Nitric Oxide; Nitric Oxide Synthase Type II; Phagocytosis; Plant Extracts; Zingiber officinale | 2009 |
Inhibition of human neutrophil 5-lipoxygenase activity by gingerdione, shogaol, capsaicin and related pungent compounds.
A series of structurally related pungent natural products including capsaicin, gingerol, and gingerdione among others were evaluated and found to be potent inhibitors of 5-HETE biosynthesis in intact human leukocytes, with IC50 values of 100 and 15 microM for capsaicin and gingerdione, respectively. Several compounds within this series were also found to inhibit PGE2 formation, with the most potent being gingerdione (IC50 = 18 microM). These and other data indicate that members of the capsaicin/gingerol family of pungent compounds can act as dual inhibitors of arachidonic acid metabolism, which could account in part for the antiinflammatory and analgesic properties of compounds within this group. Topics: Arachidonate 5-Lipoxygenase; Arachidonate Lipoxygenases; Capsaicin; Catechols; Dinoprostone; Fatty Alcohols; Guaiacol; Humans; Hydroxyeicosatetraenoic Acids; In Vitro Techniques; Lipoxygenase Inhibitors; Neutrophils; Plant Extracts; Prostaglandins E | 1986 |