shogaol has been researched along with 1-1-diphenyl-2-picrylhydrazyl* in 3 studies
3 other study(ies) available for shogaol and 1-1-diphenyl-2-picrylhydrazyl
Article | Year |
---|---|
Cytotoxic, cytoprotective and antioxidant effects of isolated phenolic compounds from fresh ginger.
Twenty-nine phenolic compounds were isolated from the root bark of fresh (Yunnan) ginger and their structures fully characterized. Selected compounds were divided into structural categories and twelve compounds subjected to in-vitro assays including DPPH radical scavenging, xanthine-oxidase inhibition, monoamine oxidase inhibition, rat-brain homogenate lipid peroxidation, and rat pheochromocytoma PC12 cell and primary liver cell viability to determine their antioxidant and cytoprotective properties. Isolated compounds were also tested against nine human tumor cell lines to characterize anticancer potency. Several diarylheptanoids and epoxidic diarylheptanoids were effective DPPH radical scavengers and moderately effective at inhibiting xanthine oxidase. An enone-dione analog of 6-shogaol (compound 2) was isolated and identified to be most effective at protecting PC12 cells from H₂O₂-induced damage. Almost all tested compounds inhibited lipid peroxidation. Three compounds, 6-shogaol, 10-gingerol and an enone-diarylheptanoid analog of curcumin (compound 6) were identified to be cytotoxic in cell lines tested, with KB and HL60 cells most susceptible to 6-shogaol and the curcumin analog with IC₅₀<10 μM. QSAR analysis revealed cytotoxicity was related to compound lipophilicity and chemical reactivity. In conclusion, we observed distinct compounds in fresh ginger to have biological activities relevant in diseases associated with reactive oxygen species. Topics: Animals; Antineoplastic Agents, Phytogenic; Antioxidants; Biphenyl Compounds; Catechols; Curcumin; Cytoprotection; Fatty Alcohols; HL-60 Cells; Humans; Hydrogen Peroxide; Hydrophobic and Hydrophilic Interactions; KB Cells; Lipid Peroxidation; Neoplasms; PC12 Cells; Phenols; Phytotherapy; Picrates; Plant Bark; Plant Extracts; Plant Roots; Rats; Xanthine Oxidase; Zingiber officinale | 2012 |
Zingiber officinale extract exhibits antidiabetic potential via modulating glucose uptake, protein glycation and inhibiting adipocyte differentiation: an in vitro study.
Ginger, the rhizome of Zingiber officinale Roscoe (Zingiberaceae), a perennial herbaceous plant is native to Southern Asia. Study was aimed to evaluate antioxidant and antidiabetic potential of ginger extract and its characterization. Possible mode of action to elicit antidiabetic activity was also evaluated.. Ethyl acetate extract of ginger (EAG) was evaluated for its antioxidant activity in terms of DPPH radical scavenging potential with an IC₅₀ value of 4.59 µg/ml. Antidiabetic activity of EAG was evaluated by estimating antiglycation potential (IC₅₀ 290.84 µg/ml). HPLC profiling of EAG revealed the presence of phenolic components, gingerol and shoagol as major constituents. After determining sub-toxic concentration of EAG (50 µg/ml), efficacy of extract to enhance glucose uptake in cell lines were checked in L6 mouse myoblast and myotubes. EAG was effective at 5 µg/ml concentration in both cases. Antibody based studies in treated cells revealed the effect of EAG in expressing Glut 4 in cell surface membrane compared to control.. The antidiabetic effect of ginger was experimentally proved in the study and has concluded that the activity is initiated by antioxidant, antiglycation and potential to express or transport Glut4 receptors from internal vesicles. Topics: Adipocytes; Adipogenesis; Animals; Antioxidants; Biological Transport; Biphenyl Compounds; Catechols; Cell Membrane; Diabetes Mellitus; Fatty Alcohols; Glucose; Glucose Transporter Type 4; Glycation End Products, Advanced; Hypoglycemic Agents; Mice; Muscle Fibers, Skeletal; Myoblasts; Phytotherapy; Picrates; Plant Extracts; Proteins; Rhizome; Zingiber officinale | 2012 |
Larvicidal constituents of Zingiber officinale (ginger) against Anisakis simplex.
In this study, we investigated the anthelmintic activity of [10]-shogaol, [6]-shogaol, [10]-gingerol and [6]-gingerol, compounds isolated from the roots of Zingiber officinale L., Zingiberaceae (ginger), against Anisakis simplex. The above compounds kill or reduce spontaneous movement in A. simplex larvae. The maximum lethal efficacy of [10]-shogaol and [10]-gingerol was approximately 80% and 100%, respectively. We further examined the time course of compound-induced loss of mobility in A. simplex. The results showed that various concentrations of [10]-shogaol, [6]-shogaol, [10]-gingerol and [6]-gingerol have maximum effects on loss of spontaneous movement from 24 to 72 h. In addition, the time course of mortality and the percentage of loss of spontaneous movements were ascertained to determine the minimum effective doses of [10]-gingerol and [10]-shogaol. [10]-Gingerol exhibited a larger maximum larvicidal effect and greater loss of spontaneous movement than [10]-shogaol and albendazole. In addition, these constituents of Zingiber officinale showed effects against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and peroxyl radicals. These constituents of Zingiber officinale are responsible for its larvicidal activity against A. simplex. Topics: Albendazole; Animals; Anisakiasis; Anisakis; Anthelmintics; Biphenyl Compounds; Catechols; Fatty Alcohols; Larva; Peroxides; Picrates; Plant Extracts; Plant Roots; Zingiber officinale | 2010 |