sew2871 and ponesimod

sew2871 has been researched along with ponesimod* in 2 studies

Other Studies

2 other study(ies) available for sew2871 and ponesimod

ArticleYear
The development and maintenance of paclitaxel-induced neuropathic pain require activation of the sphingosine 1-phosphate receptor subtype 1.
    The Journal of biological chemistry, 2014, Jul-25, Volume: 289, Issue:30

    The ceramide-sphingosine 1-phosphate (S1P) rheostat is important in regulating cell fate. Several chemotherapeutic agents, including paclitaxel (Taxol), involve pro-apoptotic ceramide in their anticancer effects. The ceramide-to-S1P pathway is also implicated in the development of pain, raising the intriguing possibility that these sphingolipids may contribute to chemotherapy- induced painful peripheral neuropathy, which can be a critical dose-limiting side effect of many widely used chemotherapeutic agents.We demonstrate that the development of paclitaxel-induced neuropathic pain was associated with ceramide and S1P formation in the spinal dorsal horn that corresponded with the engagement of S1P receptor subtype 1 (S1PR(1))- dependent neuroinflammatory processes as follows: activation of redox-sensitive transcription factors (NFκB) and MAPKs (ERK and p38) as well as enhanced formation of pro-inflammatory and neuroexcitatory cytokines (TNF-α and IL-1β). Intrathecal delivery of the S1PR1 antagonist W146 reduced these neuroinflammatory processes but increased IL-10 and IL-4, potent anti-inflammatory/ neuroprotective cytokines. Additionally, spinal W146 reversed established neuropathic pain. Noteworthy, systemic administration of the S1PR1 modulator FTY720 (Food and Drug Administration- approved for multiple sclerosis) attenuated the activation of these neuroinflammatory processes and abrogated neuropathic pain without altering anticancer properties of paclitaxel and with beneficial effects extended to oxaliplatin. Similar effects were observed with other structurally and chemically unrelated S1PR1 modulators (ponesimod and CYM-5442) and S1PR1 antagonists (NIBR-14/15) but not S1PR1 agonists (SEW2871). Our findings identify for the first time the S1P/S1PR1 axis as a promising molecular and therapeutic target in chemotherapy-induced painful peripheral neuropathy, establish a mechanistic insight into the biomolecular signaling pathways, and provide the rationale for the clinical evaluation of FTY720 in chronic pain patients.

    Topics: Anilides; Animals; Antineoplastic Agents, Phytogenic; Cytokines; Enzyme Activation; Fingolimod Hydrochloride; Humans; Immunosuppressive Agents; Indans; Lysophospholipids; Male; Neuralgia; Organophosphonates; Oxadiazoles; Paclitaxel; Propylene Glycols; Rats; Rats, Sprague-Dawley; Receptors, Lysosphingolipid; Signal Transduction; Sphingosine; Sphingosine-1-Phosphate Receptors; Thiazoles; Thiophenes

2014
Sphingosine 1-phosphate (S1P) receptor agonists mediate pro-fibrotic responses in normal human lung fibroblasts via S1P2 and S1P3 receptors and Smad-independent signaling.
    The Journal of biological chemistry, 2013, May-24, Volume: 288, Issue:21

    Synthetic sphingosine 1-phosphate receptor 1 modulators constitute a new class of drugs for the treatment of autoimmune diseases. Sphingosine 1-phosphate (S1P) signaling, however, is also involved in the development of fibrosis. Using normal human lung fibroblasts, we investigated the induction of fibrotic responses by the S1P receptor (S1PR) agonists S1P, FTY720-P, ponesimod, and SEW2871 and compared them with the responses induced by the known fibrotic mediator TGF-β1. In contrast to TGF-β1, S1PR agonists did not induce expression of the myofibroblast marker α-smooth muscle actin. However, TGF-β1, S1P, and FTY720-P caused robust stimulation of extracellular matrix (ECM) synthesis and increased pro-fibrotic marker gene expression including connective tissue growth factor. Ponesimod showed limited and SEW2871 showed no pro-fibrotic potential in these readouts. Analysis of pro-fibrotic signaling pathways showed that in contrast to TGF-β1, S1PR agonists did not activate Smad2/3 signaling but rather activated PI3K/Akt and ERK1/2 signaling to induce ECM synthesis. The strong induction of ECM synthesis by the nonselective agonists S1P and FTY720-P was due to the stimulation of S1P2 and S1P3 receptors, whereas the weaker induction of ECM synthesis at high concentrations of ponesimod was due to a low potency activation of S1P3 receptors. Finally, in normal human lung fibroblast-derived myofibroblasts that were generated by TGF-β1 pretreatment, S1P and FTY720-P were effective stimulators of ECM synthesis, whereas ponesimod was inactive, because of the down-regulation of S1P3R expression in myofibroblasts. These data demonstrate that S1PR agonists are pro-fibrotic via S1P2R and S1P3R stimulation using Smad-independent pathways.

    Topics: Actins; Animals; CHO Cells; Cricetinae; Cricetulus; Down-Regulation; Extracellular Matrix; Humans; Lung; Lysophospholipids; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Myofibroblasts; Organophosphates; Oxadiazoles; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Pulmonary Fibrosis; Receptors, Lysosphingolipid; Signal Transduction; Smad2 Protein; Smad3 Protein; Sphingosine; Thiazoles; Thiophenes; Transforming Growth Factor beta1

2013