Page last updated: 2024-08-24

sertindole and imipramine

sertindole has been researched along with imipramine in 10 studies

Research

Studies (10)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's6 (60.00)29.6817
2010's4 (40.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Cavalli, A; De Ponti, F; Poluzzi, E; Recanatini, M1
Keserü, GM1
Li, J; Rajamani, R; Reynolds, CH; Tounge, BA1
Nagashima, R; Nishikawa, T; Tobita, M1
Jia, L; Sun, H1
Caron, G; Ermondi, G; Visentin, S1
Sen, S; Sinha, N1
Cooper, J; Cui, Y; Fink, M; Gavaghan, DJ; Heath, BM; McMahon, NC; Mirams, GR; Noble, D; Sher, A1
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ1
Bienkowski, P; Bucki, A; Jaśkowska, J; Kazek, G; Kowalski, P; Kołaczkowski, M; Marcinkowska, M; Mierzejewski, P; Mitka, K; Pawłowski, M; Siwek, A; Wasik, A; Wesołowska, A1

Other Studies

10 other study(ies) available for sertindole and imipramine

ArticleYear
Toward a pharmacophore for drugs inducing the long QT syndrome: insights from a CoMFA study of HERG K(+) channel blockers.
    Journal of medicinal chemistry, 2002, Aug-29, Volume: 45, Issue:18

    Topics: Anti-Arrhythmia Agents; Cation Transport Proteins; Cluster Analysis; Databases, Factual; Ether-A-Go-Go Potassium Channels; Long QT Syndrome; Models, Molecular; Molecular Conformation; Potassium Channel Blockers; Potassium Channels; Potassium Channels, Voltage-Gated; Quantitative Structure-Activity Relationship

2002
Prediction of hERG potassium channel affinity by traditional and hologram qSAR methods.
    Bioorganic & medicinal chemistry letters, 2003, Aug-18, Volume: 13, Issue:16

    Topics: Cation Transport Proteins; Databases, Factual; Discriminant Analysis; Ether-A-Go-Go Potassium Channels; Holography; Linear Models; Potassium Channel Blockers; Potassium Channels; Potassium Channels, Voltage-Gated; Quantitative Structure-Activity Relationship

2003
A two-state homology model of the hERG K+ channel: application to ligand binding.
    Bioorganic & medicinal chemistry letters, 2005, Mar-15, Volume: 15, Issue:6

    Topics: ERG1 Potassium Channel; Ether-A-Go-Go Potassium Channels; Ligands; Models, Biological; Models, Molecular; Potassium Channels, Voltage-Gated; Protein Binding; Protein Conformation

2005
A discriminant model constructed by the support vector machine method for HERG potassium channel inhibitors.
    Bioorganic & medicinal chemistry letters, 2005, Jun-02, Volume: 15, Issue:11

    Topics: Animals; CHO Cells; Cricetinae; Discriminant Analysis; ERG1 Potassium Channel; Ether-A-Go-Go Potassium Channels; Humans; Potassium Channel Blockers; Potassium Channels, Voltage-Gated

2005
Support vector machines classification of hERG liabilities based on atom types.
    Bioorganic & medicinal chemistry, 2008, Jun-01, Volume: 16, Issue:11

    Topics: Animals; Arrhythmias, Cardiac; CHO Cells; Computer Simulation; Cricetinae; Cricetulus; Discriminant Analysis; ERG1 Potassium Channel; Ether-A-Go-Go Potassium Channels; Humans; Models, Chemical; Patch-Clamp Techniques; Potassium Channel Blockers; Potassium Channels, Voltage-Gated; Predictive Value of Tests; ROC Curve

2008
GRIND-based 3D-QSAR and CoMFA to investigate topics dominated by hydrophobic interactions: the case of hERG K+ channel blockers.
    European journal of medicinal chemistry, 2009, Volume: 44, Issue:5

    Topics: Ether-A-Go-Go Potassium Channels; Humans; Hydrophobic and Hydrophilic Interactions; Models, Molecular; Potassium Channel Blockers; Quantitative Structure-Activity Relationship

2009
Predicting hERG activities of compounds from their 3D structures: development and evaluation of a global descriptors based QSAR model.
    European journal of medicinal chemistry, 2011, Volume: 46, Issue:2

    Topics: Computer Simulation; Ether-A-Go-Go Potassium Channels; Humans; Molecular Structure; Organic Chemicals; Quantitative Structure-Activity Relationship

2011
Simulation of multiple ion channel block provides improved early prediction of compounds' clinical torsadogenic risk.
    Cardiovascular research, 2011, Jul-01, Volume: 91, Issue:1

    Topics: Action Potentials; Animals; Calcium Channel Blockers; Calcium Channels, L-Type; Computer Simulation; Dogs; Dose-Response Relationship, Drug; ERG1 Potassium Channel; Ether-A-Go-Go Potassium Channels; Guinea Pigs; HEK293 Cells; Humans; Ion Channels; Kinetics; Models, Cardiovascular; NAV1.5 Voltage-Gated Sodium Channel; Patch-Clamp Techniques; Potassium Channel Blockers; Rabbits; Risk Assessment; Risk Factors; Sodium Channel Blockers; Sodium Channels; Torsades de Pointes; Transfection

2011
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
    Toxicological sciences : an official journal of the Society of Toxicology, 2013, Volume: 136, Issue:1

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests

2013
Novel arylsulfonamide derivatives with 5-HT₆/5-HT₇ receptor antagonism targeting behavioral and psychological symptoms of dementia.
    Journal of medicinal chemistry, 2014, Jun-12, Volume: 57, Issue:11

    Topics: Animals; Antidepressive Agents; Antipsychotic Agents; Avoidance Learning; Benzoxazoles; Catalepsy; CHO Cells; Cricetulus; Dementia; Dopamine D2 Receptor Antagonists; HEK293 Cells; Humans; Male; Models, Molecular; Motor Activity; Radioligand Assay; Rats, Wistar; Receptors, Serotonin; Serotonin Antagonists; Structure-Activity Relationship; Sulfonamides

2014