serine and cephalosporin c

serine has been researched along with cephalosporin c in 34 studies

Research

Studies (34)

TimeframeStudies, this research(%)All Research%
pre-19903 (8.82)18.7374
1990's8 (23.53)18.2507
2000's11 (32.35)29.6817
2010's6 (17.65)24.3611
2020's6 (17.65)2.80

Authors

AuthorsStudies
Rando, RR1
Bush, K; Dougherty, TJ; Gougoutas, JZ; Malley, MF; Ohringer, S; Singer, SB; Sowek, JA1
Fink, AL; Tan, AK; Virden, R1
Anwar, H; Brown, MR; Kadurugamuwa, JL; Zak, O1
Perkins, HR1
Dubus, A; Frère, JM; Normark, S; Raquet, X; Wilkin, JM1
Imtiaz, U; Lerner, SA; Manavathu, EK; Mobashery, S1
Huletsky, A; Knox, JR; Levesque, RC1
Courvalin, P; Frère, JM; Goussard, S; Lamotte-Brasseur, J; Raquet, X; Vanhove, M1
Gazouli, M; Sidorenko, SV; Tzelepi, E; Tzouvelekis, LS1
Clairoux, N; Huletsky, A; Knox, JR; Levesque, RC; Sanschagrin, F; Trépanier, S1
Amicosante, G; Bianchi, B; Caravelli, B; del Tavio-Perez, MM; Franceschini, N; Gizzi, G; Mancinelli, A; Perilli, M; Segatore, B; Setacci, D1
Anderson, JC; Magliery, TJ; Schultz, PG1
Petersen, EI; Schwab, H; Sölkner, B; Stubenrauch, G; Valinger, G1
Carenbauer, AL; Crowder, MW; Garrity, JD; Periyannan, G; Yates, RB1
Methner, U; Rabsch, W; Reissbrodt, R; Tschäpe, H; Voigt, W; Williams, PH1
Degrassi, G; Guarnaccia, C; Krastanova, I; Lamba, D; Zahariev, S1
Ke, YY; Lin, TH1
Feng, D; He, M; Li, R1
Galleni, M; Mammeri, H; Nordmann, P1
Buynak, JD; Ganta, SR; Pagadala, SR; Perumal, S; Pratt, RF; Samuelsen, O; Spencer, J1
Bethel, CR; Bonomo, RA; Carey, PR; Kalp, M1
Aepfelbacher, M; Heisig, P; Hentschke, M; Kotsakis, SD; Miriagou, V; Wolters, M1
Deng, Z; Huang, X; Yin, J; Zhao, G1
Anandan, A; Flematti, G; Golden, E; Molla, G; Paterson, R; Pollegioni, L; Rosini, E; Tie, WJ; Vrielink, A1
Andersson, I; Blikstad, C; Demetriades, M; Dubus, A; Généreux, C; Hopkinson, RJ; Iqbal, A; Ivison, D; Kershaw, NJ; Lloyd, AJ; McDonough, MA; Roper, DI; Schofield, CJ; Valegård, K1
Bjerga, GE; Edvardsen, KS; Leiros, HK; Samuelsen, Ø1
Amicosante, G; Bottoni, C; Celenza, G; Colapietro, M; Galleni, M; Kerff, F; Marcoccia, F; Matagne, A; Mercuri, PS; Perilli, M; Sabatini, A1
Abdelraouf, K; Almarzoky Abuhussain, S; Nicolau, DP1
Abdelraouf, K; Gill, CM; Nicolau, DP1
Adapa, SR; Atlas, ZD; Chen, Y; Eswara, PJ; Gatdula, JR; Gelis, I; Gongora, MV; Hammond, LR; Jiang, RHY; Keramisanou, D; Lewandowski, EM; Marty, MT; Morgan, RT; Sacco, MD; Sun, X; Townsend, JA; Wang, J; Wang, S; Zhang, X1
Djorić, D; Kristich, CJ; Little, J; Minton, NE1
Bachta, KER; Bertucci, HK; Brunzelle, JS; Gatesy, SWM; Hauser, AR; Lebrun-Corbin, M; Minasov, G; Ozer, EA; Pincus, NB; Rosas-Lemus, M; Satchell, KJF; Shuvalova, LA1
Mensa, J; Soriano, A1

Reviews

2 review(s) available for serine and cephalosporin c

ArticleYear
Composition of bacterial cell walls in relation to antibiotic action.
    Advances in pharmacology, 1969, Volume: 7

    Topics: Amino Acid Sequence; Anti-Bacterial Agents; Bacitracin; Bacteria; Carbamates; Cell Wall; Cephalosporins; Cycloserine; Escherichia coli; Glucosamine; Lipid Metabolism; Lysostaphin; Nucleotides; Penicillins; Peptides; Ristocetin; Serine; Staphylococcus; Vancomycin

1969
Mechanism of action of cefiderocol.
    Revista espanola de quimioterapia : publicacion oficial de la Sociedad Espanola de Quimioterapia, 2022, Volume: 35 Suppl 2

    Topics: Animals; Anti-Bacterial Agents; beta-Lactamase Inhibitors; beta-Lactamases; Carbapenems; Cattle; Cefepime; Cefiderocol; Ceftazidime; Cephalosporins; Gram-Negative Bacteria; Iron; Quinolones; Serine; Tetracyclines

2022

Other Studies

32 other study(ies) available for serine and cephalosporin c

ArticleYear
On the mechanism of action of antibiotics which act as irreversible enzyme inhibitors.
    Biochemical pharmacology, 1975, Jun-15, Volume: 24, Issue:11-12

    Topics: Alanine; Anti-Bacterial Agents; Asparagine; Azaserine; Azo Compounds; Carbamates; Catalysis; Cell Wall; Cephalosporins; Cycloserine; Diazooxonorleucine; Enzyme Inhibitors; Glutamine; Models, Chemical; Models, Molecular; Penicillins; Purines; Pyridoxal Phosphate; Pyrimidines; Racemases and Epimerases; Serine

1975
Substitution of lysine at position 104 or 240 of TEM-1pTZ18R beta-lactamase enhances the effect of serine-164 substitution on hydrolysis or affinity for cephalosporins and the monobactam aztreonam.
    Biochemistry, 1991, Apr-02, Volume: 30, Issue:13

    Topics: Aztreonam; beta-Lactamases; Binding Sites; Cephalosporins; Escherichia coli; Hydrolysis; Kinetics; Lysine; Models, Molecular; Molecular Conformation; Mutagenesis, Site-Directed; Protein Conformation; Serine; Substrate Specificity

1991
Cryoenzymology of staphylococcal beta-lactamase: trapping a serine-70-linked acyl-enzyme.
    Biochemistry, 1990, Jan-09, Volume: 29, Issue:1

    Topics: Acylation; beta-Lactamases; Cephalosporins; Chromatography, High Pressure Liquid; Enzyme Stability; Freezing; Hydrogen-Ion Concentration; Hydrolysis; Kinetics; Penicillins; Protein Conformation; Serine; Solvents; Staphylococcus; Temperature

1990
Effect of subinhibitory concentrations of cephalosporins on surface properties and siderophore production in iron-depleted Klebsiella pneumoniae.
    Antimicrobial agents and chemotherapy, 1985, Volume: 27, Issue:2

    Topics: Bacterial Proteins; Cell Membrane; Cephalosporins; Culture Media; Electrophoresis, Polyacrylamide Gel; Enterobactin; Iron; Iron Chelating Agents; Klebsiella pneumoniae; Microbial Sensitivity Tests; Serine; Siderophores; Surface Properties; Time Factors

1985
Catalytic mechanism of active-site serine beta-lactamases: role of the conserved hydroxy group of the Lys-Thr(Ser)-Gly triad.
    The Biochemical journal, 1994, Jul-15, Volume: 301 ( Pt 2)

    Topics: Amino Acid Sequence; Base Sequence; beta-Lactamases; Binding Sites; Catalysis; Cephalosporins; Enzyme Stability; Escherichia coli; Hot Temperature; Kinetics; Molecular Sequence Data; Mutagenesis, Site-Directed; Penicillins; Salmonella typhimurium; Serine; Structure-Activity Relationship; Substrate Specificity

1994
Critical hydrogen bonding by serine 235 for cephalosporinase activity of TEM-1 beta-lactamase.
    Antimicrobial agents and chemotherapy, 1993, Volume: 37, Issue:11

    Topics: Base Sequence; beta-Lactamases; Cephalosporinase; Cephalosporins; Circular Dichroism; Escherichia coli; Hydrogen Bonding; Hydrogen-Ion Concentration; Kinetics; Molecular Sequence Data; Mutagenesis; Serine

1993
Role of Ser-238 and Lys-240 in the hydrolysis of third-generation cephalosporins by SHV-type beta-lactamases probed by site-directed mutagenesis and three-dimensional modeling.
    The Journal of biological chemistry, 1993, Feb-15, Volume: 268, Issue:5

    Topics: Amino Acid Sequence; Bacillus; Base Sequence; beta-Lactamases; Binding Sites; Cefotaxime; Ceftazidime; Cephalosporins; Citrobacter freundii; Hydrolysis; Lysine; Models, Molecular; Molecular Sequence Data; Molecular Structure; Mutagenesis, Site-Directed; Oligodeoxyribonucleotides; Protein Structure, Secondary; Recombinant Proteins; Serine; Streptomyces

1993
Stability of TEM beta-lactamase mutants hydrolyzing third generation cephalosporins.
    Proteins, 1995, Volume: 23, Issue:1

    Topics: Arginine; beta-Lactamases; Cephalosporin Resistance; Cephalosporins; Enzyme Stability; Histidine; Hydrogen-Ion Concentration; Hydrolysis; Models, Chemical; Models, Molecular; Mutation; Protein Conformation; Protein Denaturation; Protein Folding; Serine; Temperature; Thermodynamics; Trypsin

1995
Sequence of the gene encoding a plasmid-mediated cefotaxime-hydrolyzing class A beta-lactamase (CTX-M-4): involvement of serine 237 in cephalosporin hydrolysis.
    Antimicrobial agents and chemotherapy, 1998, Volume: 42, Issue:5

    Topics: Amino Acid Sequence; Bacterial Proteins; Base Sequence; beta-Lactam Resistance; beta-Lactamases; Cefotaxime; Cephalosporins; Genes, Bacterial; Hydrolysis; Molecular Sequence Data; Plasmids; Salmonella typhimurium; Serine

1998
Structure-function studies of Ser-289 in the class C beta-lactamase from Enterobacter cloacae P99.
    Antimicrobial agents and chemotherapy, 1999, Volume: 43, Issue:3

    Topics: Bacterial Proteins; beta-Lactamases; Catalysis; Cefaclor; Cefazolin; Cephalosporins; Crystallography, X-Ray; Electrophoresis, Polyacrylamide Gel; Enterobacter cloacae; Escherichia coli; Hydrolysis; Kinetics; Microbial Sensitivity Tests; Models, Molecular; Mutagenesis, Site-Directed; Plasmids; Protein Conformation; Serine; Structure-Activity Relationship

1999
Ceftibuten stability to active-site serine and metallo-beta-lactamases.
    International journal of antimicrobial agents, 2001, Volume: 17, Issue:1

    Topics: beta-Lactamases; Binding Sites; Catalysis; Ceftibuten; Cephalosporins; Drug Resistance, Microbial; Drug Stability; Hydrolysis; Serine

2001
Expanding the genetic code: selection of efficient suppressors of four-base codons and identification of "shifty" four-base codons with a library approach in Escherichia coli.
    Journal of molecular biology, 2001, Mar-30, Volume: 307, Issue:3

    Topics: Amino Acid Sequence; Ampicillin; Anticodon; Base Pairing; Base Sequence; beta-Lactamases; Cephalosporins; Codon; Escherichia coli; Frameshift Mutation; Gene Expression Regulation, Bacterial; Gene Library; Genes, Reporter; Genetic Code; Molecular Sequence Data; Mutagenesis; Protein Biosynthesis; RNA, Transfer; RNA, Transfer, Ser; Serine; Substrate Specificity; Suppression, Genetic

2001
A novel esterase from Burkholderia gladioli which shows high deacetylation activity on cephalosporins is related to beta-lactamases and DD-peptidases.
    Journal of biotechnology, 2001, Jul-26, Volume: 89, Issue:1

    Topics: Acetylation; Amino Acid Sequence; Base Sequence; beta-Lactamases; Burkholderia; Carboxypeptidases; Cephalosporins; Cloning, Molecular; DNA Primers; Escherichia coli; Hydrolysis; Molecular Sequence Data; Mutagenesis, Site-Directed; Open Reading Frames; Promoter Regions, Genetic; Sequence Homology, Amino Acid; Serine; Serine Endopeptidases; Serine-Type D-Ala-D-Ala Carboxypeptidase

2001
Probing substrate binding to metallo-beta-lactamase L1 from Stenotrophomonas maltophilia by using site-directed mutagenesis.
    BMC biochemistry, 2002, Volume: 3

    Topics: Asparagine; beta-Lactamases; Binding Sites; Carbapenems; Cephalosporins; Computational Biology; Isoleucine; Kinetics; Metals; Models, Molecular; Mutagenesis, Site-Directed; Penicillins; Phenylalanine; Protein Binding; Serine; Stenotrophomonas maltophilia; Tyrosine

2002
Role of receptor proteins for enterobactin and 2,3-dihydroxybenzoylserine in virulence of Salmonella enterica.
    Infection and immunity, 2003, Volume: 71, Issue:12

    Topics: Animals; Anti-Bacterial Agents; Bacterial Outer Membrane Proteins; Bacterial Proteins; Carrier Proteins; Cephalosporins; Chickens; Enterobactin; Female; Mice; Mice, Inbred BALB C; Poultry Diseases; Receptors, Cell Surface; Salmonella enteritidis; Salmonella Infections, Animal; Salmonella typhimurium; Serine; Serum; Virulence

2003
Heterologous expression, purification, crystallization, X-ray analysis and phasing of the acetyl xylan esterase from Bacillus pumilus.
    Biochimica et biophysica acta, 2005, May-15, Volume: 1748, Issue:2

    Topics: Acetylesterase; Alanine; Bacillus; Carbohydrate Conformation; Carbohydrate Sequence; Carbohydrates; Catalysis; Cell Wall; Cephalosporins; Chromatography, Gel; Crystallography, X-Ray; Escherichia coli; Esterases; Light; Lithium Chloride; Mutagenesis, Site-Directed; Mutation; Protein Conformation; Recombinant Proteins; Scattering, Radiation; Serine; Time Factors; X-Ray Diffraction; Xylans; Xylose

2005
A theoretical study on the activation of Ser70 in the acylation mechanism of cephalosporin antibiotics.
    Biophysical chemistry, 2005, Apr-22, Volume: 114, Issue:2-3

    Topics: Acylation; beta-Lactamases; Cephalosporins; Computer Simulation; Enzyme Activation; Models, Chemical; Models, Molecular; Molecular Structure; Serine

2005
Theoretical study of the reaction from 6-methylidene penem to seven-membered ring intermediates.
    The journal of physical chemistry. A, 2007, May-31, Volume: 111, Issue:21

    Topics: Acylation; beta-Lactamase Inhibitors; Cephalosporins; Enzyme Inhibitors; Hydrogen; Models, Theoretical; Molecular Structure; Serine; Solvents; Sulfides; Thermodynamics; Water

2007
Role of the Ser-287-Asn replacement in the hydrolysis spectrum extension of AmpC beta-lactamases in Escherichia coli.
    Antimicrobial agents and chemotherapy, 2009, Volume: 53, Issue:1

    Topics: Asparagine; Bacterial Proteins; beta-Lactamases; Cephalosporins; Escherichia coli; Escherichia coli Proteins; Hydrolysis; Microbial Sensitivity Tests; Models, Molecular; Mutagenesis, Site-Directed; Protein Structure, Secondary; Serine

2009
Approaches to the simultaneous inactivation of metallo- and serine-beta-lactamases.
    Bioorganic & medicinal chemistry letters, 2009, Mar-15, Volume: 19, Issue:6

    Topics: Amides; Amino Acid Motifs; beta-Lactamases; Catalytic Domain; Cephalosporins; Enzyme Inhibitors; Hydroxamic Acids; Inhibitory Concentration 50; Kinetics; Metals; Models, Chemical; Molecular Structure; Oximes; Serine

2009
Why the extended-spectrum beta-lactamases SHV-2 and SHV-5 are "hypersusceptible" to mechanism-based inhibitors.
    Biochemistry, 2009, Oct-20, Volume: 48, Issue:41

    Topics: beta-Lactamase Inhibitors; beta-Lactamases; Catalytic Domain; Cephalosporins; Crystallography, X-Ray; Kinetics; Microbial Sensitivity Tests; Mutagenesis, Site-Directed; Plasmids; Serine; Spectrum Analysis, Raman; Sulbactam

2009
CMY-42, a novel plasmid-mediated CMY-2 variant AmpC beta-lactamase.
    Microbial drug resistance (Larchmont, N.Y.), 2011, Volume: 17, Issue:2

    Topics: Anti-Bacterial Agents; beta-Lactamases; Cephalosporins; Drug Resistance, Bacterial; Escherichia coli; Escherichia coli Infections; Escherichia coli Proteins; Humans; Molecular Sequence Data; Plasmids; Serine; Surgical Wound Infection; Valine

2011
The N-terminal nucleophile serine of cephalosporin acylase executes the second autoproteolytic cleavage and acylpeptide hydrolysis.
    The Journal of biological chemistry, 2011, Jul-08, Volume: 286, Issue:27

    Topics: Amino Acid Substitution; Bacterial Proteins; Cephalosporins; Enzyme Activation; Enzyme Precursors; Hydrolysis; Mutation, Missense; Penicillin Amidase; Protein Structure, Quaternary; Protein Structure, Tertiary; Pseudomonas; Serine

2011
Structure of a class III engineered cephalosporin acylase: comparisons with class I acylase and implications for differences in substrate specificity and catalytic activity.
    The Biochemical journal, 2013, Apr-15, Volume: 451, Issue:2

    Topics: Amidohydrolases; Catalysis; Catalytic Domain; Cephalosporins; Crystallography, X-Ray; Kinetics; Mutation; Penicillin Amidase; Protein Conformation; Pseudomonas; Recombinant Proteins; Serine; Substrate Specificity

2013
Structural and mechanistic studies of the orf12 gene product from the clavulanic acid biosynthesis pathway.
    Acta crystallographica. Section D, Biological crystallography, 2013, Volume: 69, Issue:Pt 8

    Topics: Amino Acid Motifs; Bacterial Proteins; beta-Lactamases; beta-Lactams; Carboxypeptidases; Catalytic Domain; Cephalosporins; Clavulanic Acid; Crystallography, X-Ray; Hydrolysis; Models, Molecular; Penicillins; Protein Conformation; Protein Structure, Tertiary; Serine; Streptomyces

2013
Structural and biochemical characterization of VIM-26 shows that Leu224 has implications for the substrate specificity of VIM metallo-β-lactamases.
    The FEBS journal, 2015, Volume: 282, Issue:6

    Topics: Anti-Bacterial Agents; Bacterial Proteins; beta-Lactamases; Binding Sites; Carbapenems; Catalysis; Cephalosporins; Crystallography, X-Ray; Drug Resistance, Bacterial; Ions; Klebsiella pneumoniae; Leucine; Penicillins; Protein Binding; Protein Structure, Secondary; Protein Structure, Tertiary; Recombinant Proteins; Serine; Substrate Specificity

2015
Kinetic Study of Laboratory Mutants of NDM-1 Metallo-β-Lactamase and the Importance of an Isoleucine at Position 35.
    Antimicrobial agents and chemotherapy, 2016, Volume: 60, Issue:4

    Topics: Amino Acid Substitution; Anti-Bacterial Agents; beta-Lactam Resistance; beta-Lactamases; Biocatalysis; Catalytic Domain; Cephalosporins; Cloning, Molecular; Escherichia coli; Gene Expression; Isoleucine; Kinetics; Models, Molecular; Mutation; Protein Structure, Secondary; Recombinant Proteins; Serine; Threonine

2016
In vivo pharmacodynamics of new-generation β-lactamase inhibitor taniborbactam (formerly VNRX-5133) in combination with cefepime against serine-β-lactamase-producing Gram-negative bacteria.
    The Journal of antimicrobial chemotherapy, 2020, 12-01, Volume: 75, Issue:12

    Topics: Animals; Anti-Bacterial Agents; beta-Lactamase Inhibitors; beta-Lactamases; Borinic Acids; Carboxylic Acids; Cefepime; Cephalosporins; Humans; Mice; Microbial Sensitivity Tests; Pseudomonas aeruginosa; Serine

2020
In vivo activity of WCK 4282 (high-dose cefepime/tazobactam) against serine β-lactamase-producing Enterobacterales and Pseudomonas aeruginosa in the neutropenic murine thigh infection model.
    The Journal of antimicrobial chemotherapy, 2021, 03-12, Volume: 76, Issue:4

    Topics: Animals; Anti-Bacterial Agents; beta-Lactamases; Cefepime; Cephalosporins; Escherichia coli; Mice; Microbial Sensitivity Tests; Pseudomonas aeruginosa; Serine; Tazobactam; Thigh

2021
A unique class of Zn
    Nature communications, 2022, 07-28, Volume: 13, Issue:1

    Topics: Anti-Bacterial Agents; Bacterial Proteins; beta-Lactams; Cephalosporin Resistance; Cephalosporins; Clostridioides; Clostridioides difficile; Humans; Serine; Zinc

2022
GpsB Promotes PASTA Kinase Signaling and Cephalosporin Resistance in
    Journal of bacteriology, 2022, Oct-18, Volume: 204, Issue:10

    Topics: Anti-Bacterial Agents; Cephalosporin Resistance; Cephalosporins; Enterococcus faecalis; Phosphotransferases; Protein Serine-Threonine Kinases; Serine; Signal Transduction; Threonine

2022
Functional and Structural Characterization of OXA-935, a Novel OXA-10-Family β-Lactamase from Pseudomonas aeruginosa.
    Antimicrobial agents and chemotherapy, 2022, 10-18, Volume: 66, Issue:10

    Topics: Anti-Bacterial Agents; Aspartic Acid; Azabicyclo Compounds; beta-Lactamase Inhibitors; beta-Lactamases; Ceftazidime; Cephalosporinase; Cephalosporins; Glycine; Humans; Microbial Sensitivity Tests; Phenylalanine; Pseudomonas aeruginosa; Pseudomonas Infections; Serine; Tazobactam

2022