sepharose and tyrosyl-isoleucyl-glycyl-seryl-arginine

sepharose has been researched along with tyrosyl-isoleucyl-glycyl-seryl-arginine* in 1 studies

Other Studies

1 other study(ies) available for sepharose and tyrosyl-isoleucyl-glycyl-seryl-arginine

ArticleYear
Competition between cell-substratum interactions and cell-cell interactions.
    Journal of cellular physiology, 1992, Volume: 152, Issue:2

    Clusterin, a glycoprotein which elicits the aggregation of a wide variety of cells (Fritz, I. B., and Burdy, K.:J. Cell Physiol., 140:18-28, 1989), has been utilized to investigate some of the factors modulating the competition between cell-substratum interactions and cell-cell interactions. We compared the responses to clusterin by anchorage-independent cells (erythrocytes) with those by anchorage-dependent TM4 cells (a cell line derived from neonatal mouse testis cells). Cells were maintained in culture in the presence of various substrata chosen to enhance cell-substratum interactions (laminin-coated wells), or to diminish cell-substratum interactions (agarose-coated wells). Results obtained showed that the aggregation of erythrocytes elicited by clusterin was independent of the nature of the substratum. In contrast, clusterin addition resulted in aggregation of anchorage-dependent TM4 cells only when TM4 cell-substratum interactions were weak. Thus, clusterin did not aggregate TM4 cells plated upon a laminin substratum, but readily aggregated TM4 cells plated upon an agarose-coated substratum, independent of the sequence of addition of cells and clusterin to the culture dish. We utilized YIGSR, a peptide which competes with laminin for laminin receptors, to determine the possible role of laminin receptors on TM4 cells in the competition between cell-substratum interactions and cell-cell interactions. The presence of YIGSR did not alter responses of erythrocytes to clusterin under all conditions examined. In contrast, the responses of TM4 cells to clusterin were greatly changed. YIGSR addition resulted in the inhibition of aggregation of TM4 cells otherwise elicited by clusterin. YIGSR also prevented attachment of TM4 cells to a laminin-coated surface, but this was reversed by the presence of clusterin. We discuss the possible roles of clusterin and laminin in altering the balance in the competition between cell to cell interactions and cell to substratum interactions.

    Topics: Animals; Cell Aggregation; Cell Communication; Cell Line; Clusterin; Culture Media; Cytological Techniques; Glycoproteins; Laminin; Male; Molecular Chaperones; Oligopeptides; Sepharose; Testis

1992