sepharose and maltodextrin

sepharose has been researched along with maltodextrin* in 2 studies

Other Studies

2 other study(ies) available for sepharose and maltodextrin

ArticleYear
Dynamic experimentation on the confocal laser scanning microscope: application to soft-solid, composite food materials.
    Journal of microscopy, 2001, Volume: 201, Issue:Pt 2

    Confocal laser scanning microscopy (CLSM) is used to follow the dynamic structural evolution of several phase-separated mixed biopolymer gel composites. Two protein/polysaccharide mixed gel systems were examined: gelatin/maltodextrin and gelatin/agarose. These materials exhibit 'emulsion-like' structures, with included spherical particles of one phase (i.e. polymer A) within a continuous matrix of the second (i.e. polymer B). Compositional control of these materials allows the phase order to be inverted (i.e. polymer B included and polymer A continuous), giving four basic variants for the present composites. Tension and compression mechanical tests were conducted dynamically on the CLSM, with crack/microstructure interactions investigated using a notched compact tension geometry. Gelatin/maltodextrin composites exhibit a 'pseudo-yielding' stress/strain response in both tension and compression, when the gelatin-rich phase is continuous, which was attributed to debonding of the particle/matrix interface. This behaviour is significantly less apparent for both the gelatin/agarose composites, and the maltodextrin continuous gelatin/maltodextrin composites, with these materials responding in a nominally linear elastic manner. Values of the interfacial fracture energy for selected compositions of the two biopolymer systems were determined by 90 degrees peel testing, where a gelatin layer was peeled from either a maltodextrin or agarose substrate. For biopolymer layers 'cast' together, a value of 0.2 +/- 0.2 J m-2 was obtained for the fracture energy of a gelatin/maltodextrin interface, while a significantly higher value of 6.5 +/- 0.2 J m-2 was determined for a gelatin/agarose interface. The interfacial fracture energy of the two mixed systems was also determined following an indirect elastomer composite debonding model. An interfacial fracture energy of approximately 0.25 J m-2 was determined using this approach for the gelatin continuous gelatin/maltodextrin composite, which compares favourably with the value calculated directly by peel testing (i.e. approximately 0.2 J m-2). A somewhat higher value was estimated for the gelatin continuous gelatin/agarose system (1.0-2.0 J m-2), using this model, although there are severe limitations to this approach for this mixed gel system. In the present case, it is believed that the differing mechanical response of the two mixed biopolymer systems, when the gelatin phase is continuous, arises from the order of magnitude d

    Topics: Biopolymers; Food; Gelatin; Microscopy, Confocal; Polysaccharides; Sepharose; Surface Properties

2001
Investigations on gel forming media for use in low gravity bioseparations research.
    Advances in space research : the official journal of the Committee on Space Research (COSPAR), 1989, Volume: 9, Issue:11

    Microgravity research includes investigations designed to gain insight on methods of separating living cells. During a typical separation certain real-time measurements can be made by optical methods, but some materials must also be subjected to subsequent analyses, sometimes including cultivation of the separated cells. In the absence of on-orbit analytical or fraction collecting procedures, some means is required to "capture" cells after separation. The use of solutions that form gels was therefore investigated as a means of maintaining cells and/or macromolecules in the separated state after two types of simple ground-based experiments. Microgravity electrophoresis experiments were simulated by separating model cell types (rat, chicken, human and rabbit erythrocytes) in a vertical density gradient containing low-conductivity buffer, 1.7%-6.5% Ficoll, 6.8-5.0% sucrose, and 1% SeaPrep low-melting temperature agarose and demonstrating that, upon cooling, a gel formed in the column, and cells could be captured in the positions to which they had migrated. Two-phase extraction experiments were simulated by choosing two-polymer solutions in which phase separation occurs in normal saline at temperatures compatible with cell viability and in which one or both phases form a gel upon cooling. Suitable polymers included commercial agaroses (1-2%), maltodextrin (5-7%) and gelatin (5-20%).

    Topics: Animals; Cell Separation; Chickens; Culture Media; Electrophoresis; Erythrocytes; Gelatin; Gels; Humans; Polysaccharides; Rabbits; Rats; Sepharose; Weightlessness Simulation

1989