seneciphylline and jacobine

seneciphylline has been researched along with jacobine* in 2 studies

Other Studies

2 other study(ies) available for seneciphylline and jacobine

ArticleYear
The effect of structurally related metabolites on insect herbivores: A case study on pyrrolizidine alkaloids and western flower thrips.
    Phytochemistry, 2017, Volume: 138

    Plant specialised metabolites (SMs) are very diverse in terms of both their number and chemical structures with more than 200,000 estimated compounds. This chemical diversity occurs not only among different groups of compounds but also within the groups themselves. In the context of plant-insect interactions, the chemical diversity within a class of structurally related metabolites is generally also related to their bioactivity. In this study, we tested firstly whether individual SMs within the group of pyrrolizidine alkaloids (PAs) differ in their effects on insect herbivores (western flower thrips, Frankliniella occidentalis). Secondly, we tested combinations of PA N-oxides to determine whether they are more active than their individual components. We also evaluated the bioactivity of six PA free bases and their corresponding N-oxides. At concentrations similar to that in plants, several PAs reduced thrip's survival but the effect also differed strongly among PAs. In general, PA free bases caused a lower survival than their corresponding N-oxides. Among the tested PA free bases, we found jacobine and retrorsine to be the most active against second instar larvae of thrips, followed by erucifoline and seneciphylline, while senecionine and monocrotaline did not exhibit significant dose-dependent effects on thrip's survival. In the case of PA N-oxides, we found that only senecionine N-oxide and jacobine N-oxide reduced thrip's survival, although the effect of senecionine N-oxide was weak. Combinations of PA N-oxides showed no synergistic effects. These findings indicate the differences observed in the effect of structurally related SMs on insect herbivores. It is of limited value to study the bioactivity of combined groups, such as PAs, without taking their composition into account.

    Topics: Animals; Herbivory; Larva; Molecular Structure; Pyrrolizidine Alkaloids; Thysanoptera

2017
Toxicity of pyrrolizidine alkaloids to Spodoptera exigua using insect cell lines and injection bioassays.
    Journal of chemical ecology, 2014, Volume: 40, Issue:6

    Pyrrolizidine alkaloids (PAs) are feeding deterrents and toxic compounds to generalist herbivores. Among the PAs of Jacobaea vulgaris Gaertn, jacobine and erucifoline are the most effective against insect herbivores as indicated by correlative studies. Because little is known about the effect of jacobine and erucifoline as individual PAs, we isolated these compounds from their respective Jacobaea chemotypes. These PAs and other commercially available senecionine-like PAs, including senecionine, seneciphylline, retrorsine, and senkirkine, were tested as free base and N-oxide forms at a range of 0-70 ppm. Feeding bioassays using live insects are closer to the natural pattern but require relatively large amounts of test compounds. We, therefore, compared the toxicity of PAs using both Spodoptera exigua cell line and larval injection bioassays. Both bioassays led to similar results in the order of PA toxicity, indicating that the cell lines are a valuable tool for a first toxicity screen. Testing individual PAs, jacobine and erucifoline were the most toxic PAs, suggesting their major role in plant defense against generalist herbivores. Senkirkine and seneciphylline were less toxic than jacobine and erucifoline but more toxic than retrorsine. Senecionine was not toxic at the tested concentrations. For all toxic PAs, the free base form was more toxic than the N-oxide form. Our results demonstrate that structural variation of PAs influences their effectiveness in plant defense.

    Topics: Animals; Biological Assay; Cell Line; Drug Evaluation, Preclinical; Herbivory; Larva; Oxides; Pyrrolizidine Alkaloids; Spodoptera; Structure-Activity Relationship

2014