selfotel has been researched along with kainic acid in 13 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 10 (76.92) | 18.2507 |
2000's | 2 (15.38) | 29.6817 |
2010's | 1 (7.69) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Bartoccini, F; Carminati, P; Castorina, M; Di Cesare, MA; Di Serio, S; Gallo, G; Ghirardi, O; Giorgi, F; Giorgi, L; Minetti, P; Piersanti, G; Tarzia, G; Tinti, MO | 1 |
Hayashi, S; Kato, A; Mizuno, K; Morita, A; Nakata, E; Ohashi, K; Yamamura, K | 1 |
Arnold, MB; Elzey, T; Leander, JD; Lodge, D; Ornstein, PL; Paschal, JW; Schoepp, DD | 1 |
Johnson, BG; McQuaid, LA; Schoepp, DD; Smith, EC | 1 |
Colpaert, FC; Koek, W; Woods, JH | 1 |
Fedele, E; Raiteri, M; Versace, P | 1 |
Baron, SP; Woods, JH | 1 |
French, ED; Wang, T | 1 |
Fagg, GE; Massieu, L; McVey, M; Thedinga, KH | 1 |
Allen, NK; Arnold, MB; Bleisch, T; Borromeo, PS; Leander, JD; Lodge, D; Lugar, CW; Ornstein, PL; Schoepp, DD | 2 |
Drejer, J; Gouliaev, AH; Jensen, LH; Mathiesen, C; Moller, A; Nielsen, EO; Varming, T; Wätjen, F | 1 |
Balcar, VJ; FitzGibbon, T; Lawrance, ML; Pliss, L; Shave, E; Stastny, F | 1 |
13 other study(ies) available for selfotel and kainic acid
Article | Year |
---|---|
2-n-Butyl-9-methyl-8-[1,2,3]triazol-2-yl-9H-purin-6-ylamine and analogues as A2A adenosine receptor antagonists. Design, synthesis, and pharmacological characterization.
Topics: Adenine; Adenosine A2 Receptor Antagonists; Animals; Cell Line; Cricetinae; Cricetulus; Drug Design; Humans; Imidazoles; Male; Models, Molecular; Motor Activity; Purines; Radioligand Assay; Rats; Rats, Inbred F344; Structure-Activity Relationship; Triazoles | 2005 |
Discovery of {1-[4-(2-{hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl}-1H-benzimidazol-1-yl)piperidin-1-yl]cyclooctyl}methanol, systemically potent novel non-peptide agonist of nociceptin/orphanin FQ receptor as analgesic for the treatment of neuropathic pain: de
Topics: Analgesics; Animals; Benzimidazoles; Drug Design; Drug Evaluation, Preclinical; Humans; Microsomes, Liver; Neuralgia; Nociceptin Receptor; Pyrroles; Rats; Receptors, Opioid; Structure-Activity Relationship | 2010 |
4-(Tetrazolylalkyl)piperidine-2-carboxylic acids. Potent and selective N-methyl-D-aspartic acid receptor antagonists with a short duration of action.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Cerebral Cortex; Ibotenic Acid; Indicators and Reagents; Kainic Acid; Magnetic Resonance Spectroscopy; Mice; Molecular Structure; N-Methylaspartate; Pipecolic Acids; Rats; Receptors, N-Methyl-D-Aspartate; Seizures; Structure-Activity Relationship; Tetrazoles | 1991 |
Stereoselectivity and mode of inhibition of phosphoinositide-coupled excitatory amino acid receptors by 2-amino-3-phosphonopropionic acid.
Topics: Alanine; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Aminobutyrates; Animals; Aspartic Acid; Brain; Hydrolysis; Ibotenic Acid; Inositol Phosphates; Kainic Acid; Male; N-Methylaspartate; Pipecolic Acids; Piperidines; Radioligand Assay; Rats; Rats, Inbred Strains; Receptors, Amino Acid; Receptors, Cell Surface; Stereoisomerism | 1990 |
N-methyl-D-aspartate antagonism and phencyclidine-like activity: a drug discrimination analysis.
Topics: Animals; Anticonvulsants; Aspartic Acid; Behavior, Animal; Injections, Intraperitoneal; Kainic Acid; Male; Mice; N-Methylaspartate; Phencyclidine; Pipecolic Acids; Piperidines; Rats; Rats, Inbred Strains | 1990 |
Evaluation of the mechanisms underlying the kainate-induced impairment of [3H]dopamine release in the rat striatum.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Corpus Striatum; Dizocilpine Maleate; Dopamine; Electric Stimulation; Kainic Acid; Ketamine; Male; N-Methylaspartate; Neuromuscular Depolarizing Agents; Neurons, Afferent; Pipecolic Acids; Quinoxalines; Rats; Rats, Sprague-Dawley | 1993 |
Dipsogenic effects of excitatory amino acid agonists in pigeons.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Columbidae; Drinking; Ibotenic Acid; Kainic Acid; N-Methylaspartate; Pipecolic Acids; Receptors, N-Methyl-D-Aspartate; Stereoisomerism | 1993 |
Electrophysiological evidence for the existence of NMDA and non-NMDA receptors on rat ventral tegmental dopamine neurons.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amino Acids; Animals; Electrophysiology; Ibotenic Acid; Kainic Acid; Male; N-Methylaspartate; Neurons; Pipecolic Acids; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, Amino Acid; Receptors, N-Methyl-D-Aspartate; Tegmentum Mesencephali | 1993 |
A comparative analysis of the neuroprotective properties of competitive and uncompetitive N-methyl-D-aspartate receptor antagonists in vivo: implications for the process of excitotoxic degeneration and its therapy.
Topics: 2-Amino-5-phosphonovalerate; Acetylcholine; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Binding, Competitive; Biomarkers; Cell Death; Choline O-Acetyltransferase; Corpus Striatum; Dizocilpine Maleate; Drug Administration Schedule; gamma-Aminobutyric Acid; Glutamate Decarboxylase; Injections; Injections, Intraperitoneal; Kainic Acid; Male; Nerve Degeneration; Nerve Tissue Proteins; Neurons; Neurotoxins; Pipecolic Acids; Piperazines; Quinolinic Acid; Rats; Receptors, N-Methyl-D-Aspartate | 1993 |
Structure-activity studies of 6-(tetrazolylalkyl)-substituted decahydroisoquinoline-3-carboxylic acid AMPA receptor antagonists. 1. Effects of stereochemistry, chain length, and chain substitution.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Carboxylic Acids; Cerebral Cortex; Isoquinolines; Kainic Acid; Kinetics; Molecular Structure; N-Methylaspartate; Pipecolic Acids; Radioligand Assay; Rats; Receptors, AMPA; Structure-Activity Relationship; Tetrazoles; Tritium | 1996 |
Structure-activity studies of 6-substituted decahydroisoquinoline-3-carboxylic acid AMPA receptor antagonists. 2. Effects of distal acid bioisosteric substitution, absolute stereochemical preferences, and in vivo activity.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Carboxylic Acids; Cerebral Cortex; Electroshock; Isoquinolines; Kainic Acid; Mice; Models, Molecular; Molecular Structure; Pipecolic Acids; Rats; Receptors, AMPA; Seizures; Stereoisomerism; Structure-Activity Relationship | 1996 |
SPD 502: a water-soluble and in vivo long-lasting AMPA antagonist with neuroprotective activity.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Binding Sites; Binding, Competitive; Cell Membrane; Cells, Cultured; Cerebral Cortex; Electroshock; Excitatory Amino Acid Antagonists; gamma-Aminobutyric Acid; Glycine; Isoquinolines; Kainic Acid; Kinetics; Male; Membrane Potentials; Mice; Mice, Inbred Strains; Molecular Structure; Neurons; Neuroprotective Agents; Patch-Clamp Techniques; Pipecolic Acids; Pyrroles; Quinoxalines; Rats; Rats, Wistar; Receptors, AMPA; Seizures; Stereoisomerism; Tetrahydroisoquinolines | 1999 |
Regional distribution and pharmacological characteristics of [3H]N-acetyl-aspartyl-glutamate (NAAG) binding sites in rat brain.
Topics: Alanine; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Binding Sites; Brain; Brain Chemistry; Carboxypeptidases; Cold Temperature; Cycloleucine; Cyclopropanes; Dipeptides; Dizocilpine Maleate; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Female; Glutamate Carboxypeptidase II; Glycine; Kainic Acid; Male; Nerve Tissue Proteins; Phosphoserine; Pipecolic Acids; Rats; Rats, Sprague-Dawley; Receptors, Glutamate; Receptors, Metabotropic Glutamate; Receptors, N-Methyl-D-Aspartate; Tetrazoles | 2001 |