secoisolariciresinol-diglucoside and secoisolariciresinol

secoisolariciresinol-diglucoside has been researched along with secoisolariciresinol* in 20 studies

Other Studies

20 other study(ies) available for secoisolariciresinol-diglucoside and secoisolariciresinol

ArticleYear
Oral Pharmacokinetics of Enriched Secoisolariciresinol Diglucoside and Its Polymer in Rats.
    Journal of natural products, 2021, 06-25, Volume: 84, Issue:6

    Secoisolariciresinol diglucoside (SDG) is the principal lignan of flaxseed and precursor of its aglycone, secoisolariciresinol (SECO), and the mammalian lignans enterolactone (EL) and enterodiol (ED), the putative bioactive forms of oral administration of SDG. SDG is present in the seed hull as an ester-linked polymer. Although extraction and purification of SDG monomer is costly, the use of naturally occurring SDG in polymer form may offer a more economical approach for delivery of this precursor. The extent of SDG release from the polymer and subsequent bioavailability of SDG metabolites are unknown. To understand the relative bioavailability of SDG polymer, this study examined the comparative bioavailability of enriched SDG and SDG polymer in rats after a single oral SDG equivalent dose (40 mg/kg). A validated LC-MS/MS method quantified SDG and its metabolites in rat plasma following serial blood collections. SDG remained undetectable in rat plasma samples. Unconjugated SECO was detected in plasma after 0.25 h. Unconjugated ED was observed after 8 h (3.4 ± 3.3 ng/mL) and 12 h (6.2 ± 3.3 ng/mL) for enriched SDG and SDG polymer, respectively. Total (conjugated and unconjugated) ED and EL resulting from enriched SDG and SDG polymer reached similar maximal concentrations between 11 and 12 h and demonstrated similar total body exposures (AUC values). These data suggest a similar pharmacokinetic profile between the enriched and polymer form of SDG, providing support for the use of SDG polymer as a more economical precursor for SECO, ED, and EL in applications of chronic disease management.

    Topics: 4-Butyrolactone; Animals; Biological Availability; Butylene Glycols; Female; Flax; Glucosides; Lignans; Molecular Structure; Polymers; Rats; Rats, Wistar; Seeds

2021
Effect of flaxseed polyphenols on physical stability and oxidative stability of flaxseed oil-in-water nanoemulsions.
    Food chemistry, 2019, Dec-15, Volume: 301

    Recent studies have shown that the high susceptibility of flaxseed oil nanoemulsions to lipid oxidation limits their incorporation into functional foods and beverages. For this reason, the impact of various flaxseed phenolic extracts on the physical and oxidative stability of flaxseed oil nanoemulsions was investigated. Flaxseed lignan extract (FLE) and secoisolariciresinol (SECO) exhibited antioxidant activity whereas secoisolariciresinol diglucoside (SDG) and p-coumaric acid (CouA) exhibited prooxidant activity in the flaxseed oil nanoemulsions. The antioxidant potential of flaxseed phenolics in the nanoemulsions was as follows: SECO < CouA < SDG ≈ FLE. Moreover, the antioxidant/prooxidant activity of the phenolics was also related to their free radical scavenging activity and partitioning in the nanoemulsions. Our results suggested that both SECO and FLE were good plant-based antioxidants for improving the stability of flaxseed oil nanoemulsions.

    Topics: Antioxidants; Butylene Glycols; Emulsions; Flax; Glucosides; Hydrolysis; Lignans; Linseed Oil; Nanostructures; Oxidation-Reduction; Plant Extracts; Polyphenols; Water

2019
Determination of lignans, phenolic acids and antioxidant capacity in transformed hairy root culture of Linum usitatissimum.
    Natural product research, 2018, Volume: 32, Issue:15

    Hairy root culture is a promising alternative method for the production of secondary metabolites. In this study, transformed root of Linum usitatissimum was established using Agrobacterium rhizogenes A4 strain from root cultures for lignans, phenolic acids and antioxidant capacity determination. Total lignin content (secoisolariciresinol diglucoside, secoisolariciresinol and matairesinol) was 55.5% higher in transformed root cultures than in the non-transformed root culture. Secoisolariciresinol was detected in higher concentration (2.107 μmol/g DM) in the transformed root culture than non-transformed culture (1.099 μmol/g DM). Secoisolariciresinol diglucoside and matairesinol were exclusively detected in the transformed root culture, but were not found in the non-transformed root culture. The overall production of phenolic acids in transformed roots was approximately 3.5 times higher than that of the corresponding non-transformed culture. Free radical scavenging DPPH˙ and ABTS˙

    Topics: Antioxidants; Biphenyl Compounds; Butylene Glycols; Flax; Furans; Glucosides; Hydroxybenzoates; Lignans; Picrates; Plant Roots; Tissue Culture Techniques

2018
UGT74S1 is the key player in controlling secoisolariciresinol diglucoside (SDG) formation in flax.
    BMC plant biology, 2017, 02-02, Volume: 17, Issue:1

    Flax lignan, commonly known as secoisolariciresinol (SECO) diglucoside (SDG), has recently been reported with health-promoting activities, including its positive impact in metabolic diseases. However, not much was reported on the biosynthesis of SDG and its monoglucoside (SMG) until lately. Flax UGT74S1 was recently reported to sequentially glucosylate SECO into SMG and SDG in vitro. However, whether this gene is the only UGT achieving SECO glucosylation in flax was not known.. Flax genome-wide mining for UGTs was performed. Phylogenetic and gene duplication analyses, heterologous gene expression and enzyme assays were conducted to identify family members closely related to UGT74S1 and to establish their roles in SECO glucosylation. A total of 299 different UGTs were identified, of which 241 (81%) were duplicated. Flax UGTs diverged 2.4-153.6 MYA and 71% were found to be under purifying selection pressure. UGT74S1, a single copy gene located on chromosome 7, displayed no evidence of duplication and was deemed to be under positive selection pressure. The phylogenetic analysis identified four main clusters where cluster 4, which included UGT74S1, was the most diverse. The duplicated UGT74S4 and UGT74S3, located on chromosomes 8 and 14, respectively, were the most closely related to UGT74S1 and were differentially expressed in different tissues. Heterologous expression levels of UGT74S1, UGT74S4 and UGT74S3 proteins were similar but UGT74S4 and UGT74S3 glucosylation activity towards SECO was seven fold less than UGT74S1. In addition, they both failed to produce SDG, suggesting neofunctionalization following their divergence from UGT74S1.. We showed that UGT74S1 is closely related to two duplicated genes, UGT74S4 and UGT74S3 which, unlike UGT74S1, failed to glucosylate SMG into SDG. The study suggests that UGT74S1 may be the key player in controlling SECO glucosylation into SDG in flax although its closely related genes may also contribute to a minor extent in supplying the SMG precursor to UGT74S1.

    Topics: Butylene Glycols; Evolution, Molecular; Flax; Gene Duplication; Gene Expression; Genes, Plant; Genetic Variation; Genome, Plant; Glucosides; Lignans

2017
Detection of novel metabolites of flaxseed lignans in vitro and in vivo.
    Molecular nutrition & food research, 2016, Volume: 60, Issue:7

    This study aimed to improve the knowledge of secoisolariciresinol diglucoside (SDG) transformation by human gut microbiota.. SDG-supplemented microbiota cultures were inoculated with the feces of five subjects. The same volunteers received a flaxseed supplement for 7 days. SDG metabolites in cultures, feces, and urine were monitored by LC-ESI-QTOF and LC-DAD. In all cultures, SDG was deglycosylated to secoisolariciresinol (SECO) within 12 h. SECO underwent successive dehydroxylations and demethylations yielding enterodiol (4-18% conversion) and enterolactone (0.2-6%) after 24 h. Novel intermediates related to SECO, matairesinol (MATA), and anhydrosecoisolariciresinol (AHS) were identified in fecal cultures. These metabolites were also found after flaxseed consumption in feces and urine (in approximate amounts between 0.01-47.03 μg/g and 0.01-13.49 μg/mL, respectively) in their native form and/or modified by phase II human enzymes (glucuronide, sulfate and sulfoglucuronide conjugates).. Derivatives of MATA and AHS are described for the first time as intermediates of SDG biotransformation by intestinal bacteria, providing a more comprehensive knowledge of lignan intestinal metabolism. The transformations observed in vitro seem to occur in vivo as well. The detection in urine of SDG intermediates indicates their gut absorption, opening new perspectives on the study of their systemic biological effects.

    Topics: 4-Butyrolactone; Adult; Bifidobacterium pseudocatenulatum; Butylene Glycols; Dietary Supplements; Feces; Female; Flax; Furans; Gastrointestinal Microbiome; Glucosides; Humans; Intestinal Mucosa; Intestines; Lignans; Male; Middle Aged; Prebiotics; Probiotics; Young Adult

2016
Comparative pharmacokinetics of purified flaxseed and associated mammalian lignans in male Wistar rats.
    The British journal of nutrition, 2015, Mar-14, Volume: 113, Issue:5

    Consumption of flaxseed lignans is associated with various health benefits; however, little is known about the bioavailability of purified lignans in flaxseed. Data on their bioavailability and hence pharmacokinetics (PK) are necessary to better understand their role in putative health benefits. In the present study, we conducted a comparative PK analysis of the principal lignan of flaxseed, secoisolariciresinol diglucoside (SDG), and its primary metabolites, secoisolariciresinol (SECO), enterodiol (ED) and enterolactone (EL) in rats. Purified lignans were intravenously or orally administered to each male Wistar rat. SDG and its primary metabolites SECO, ED and EL were administered orally at doses of 40, 40, 10 and 10 mg/kg, respectively, and intravenously at doses of 20, 20, 5 and 1 mg/kg, respectively. Blood samples were collected at 0 (pre-dose), 5, 10, 15, 20, 30 and 45 min, and at 1, 2, 4, 6, 8, 12 and 24 h post-dosing, and serum samples were analysed. PK parameters and oral bioavailability of purified lignans were determined by non-compartmental methods. In general, administration of the flaxseed lignans SDG, SECO and ED demonstrated a high systemic clearance, a large volume of distribution and short half-lives, whereas administration of EL at the doses of 1 mg/kg (intravenously) and 10 mg/kg (orally administered) killed the rats within a few hours of dosing, precluding a PK analysis of this lignan. PK parameters of flaxseed lignans exhibited the following order: systemic clearance, SDG < SECO < ED; volume of distribution, SDG < SECO < ED; half-life, SDG < ED < SECO. The percentage of oral bioavailability was 0, 25 and < 1 % for SDG, SECO and ED, respectively.

    Topics: 4-Butyrolactone; Administration, Oral; Animals; Biological Availability; Butylene Glycols; Dietary Supplements; Dose-Response Relationship, Drug; Estrogens; Flax; Glucosides; Half-Life; Injections, Intravenous; Intestinal Absorption; Kinetics; Lignans; Male; Metabolic Clearance Rate; Phytoestrogens; Random Allocation; Rats, Wistar; Seeds

2015
Dirigent Protein-Mediated Lignan and Cyanogenic Glucoside Formation in Flax Seed: Integrated Omics and MALDI Mass Spectrometry Imaging.
    Journal of natural products, 2015, Jun-26, Volume: 78, Issue:6

    An integrated omics approach using genomics, transcriptomics, metabolomics (MALDI mass spectrometry imaging, MSI), and bioinformatics was employed to study spatiotemporal formation and deposition of health-protecting polymeric lignans and plant defense cyanogenic glucosides. Intact flax (Linum usitatissimum) capsules and seed tissues at different development stages were analyzed. Transcriptome analyses indicated distinct expression patterns of dirigent protein (DP) gene family members encoding (-)- and (+)-pinoresinol-forming DPs and their associated downstream metabolic processes, respectively, with the former expressed at early seed coat development stages. Genes encoding (+)-pinoresinol-forming DPs were, in contrast, expressed at later development stages. Recombinant DP expression and DP assays also unequivocally established their distinct stereoselective biochemical functions. Using MALDI MSI and ion mobility separation analyses, the pinoresinol downstream derivatives, secoisolariciresinol diglucoside (SDG) and SDG hydroxymethylglutaryl ester, were localized and detectable only in early seed coat development stages. SDG derivatives were then converted into higher molecular weight phenolics during seed coat maturation. By contrast, the plant defense cyanogenic glucosides, the monoglucosides linamarin/lotaustralin, were detected throughout the flax capsule, whereas diglucosides linustatin/neolinustatin only accumulated in endosperm and embryo tissues. A putative biosynthetic pathway to the cyanogens is proposed on the basis of transcriptome coexpression data. Localization of all metabolites was at ca. 20 μm resolution, with the web based tool OpenMSI enabling not only resolution enhancement but also an interactive system for real-time searching for any ion in the tissue under analysis.

    Topics: Butylene Glycols; Flax; Furans; Glucosides; Glycosides; Lignans; Molecular Structure; Nitriles; Seeds; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization

2015
Permeability and conjugative metabolism of flaxseed lignans by Caco-2 human intestinal cells.
    Journal of natural products, 2014, Jan-24, Volume: 77, Issue:1

    Reports in the literature associate the dietary intake of flaxseed lignans with a number of health benefits. The major lignan found in flaxseed, secoisolariciresinol diglucoside (1), undergoes metabolism principally to secoisolariciresinol (2), enterodiol (3), and enterolactone (4) in the human gastrointestinal tract. Systemically, lignans are present largely as phase II enzyme conjugates. To improve understanding of the oral absorption characteristics, a systematic evaluation of the intestinal permeation was conducted and the conjugative metabolism potential of these lignans using the polarized Caco-2 cell system was analyzed. For permeation studies, lignans (100 μM) were added to acceptor or donor compartments and samples were taken at 2 h. For metabolism studies, lignans (100 μM) were incubated in Caco-2 for a maximum of 48 h. Cell lysates and media were treated with β-glucuronidase/sulfatase, and lignan concentrations were determined using HPLC. Apical-to-basal permeability coefficients for 2-4 were 8.0 ± 0.4, 7.7 ± 0.2, and 13.7 ± 0.2 (×10(-6)) cm/s, respectively, whereas efflux ratios were 0.8-1.2, consistent with passive diffusion. The permeation of compound 1 was not detected. The extent of conjugation after 48 h was <3%, ∼95%, ∼90%, and >99% for 1-4, respectively. These data suggest 2-4, but not 1 undergo passive permeation and conjugative metabolism by Caco-2 cells.

    Topics: 4-Butyrolactone; Algorithms; Butylene Glycols; Caco-2 Cells; Chromatography, High Pressure Liquid; Flax; Glucosides; Humans; Intestinal Mucosa; Lignans; Molecular Structure; Permeability

2014
Cloning, expression, and characterization of the β-glucosidase hydrolyzing secoisolariciresinol diglucoside to secoisolariciresinol from Bacteroides uniformis ZL1.
    Applied microbiology and biotechnology, 2014, Volume: 98, Issue:6

    Previously, from the human intestinal flora we isolated the bacterial strain Bacteroides uniformis ZL1, which could convert secoisolariciresinol diglucoside (SDG) to its aglycone secoisolariciresinol (SECO) in vivo. In this study, 24 putative β-glucosidase genes were screened from the genome of B. uniformis ATCC 8492, which were used as templates to design PCR primers for the target genes in B. uniformis ZL1. Fifteen genes (bgl1-bgl15) were amplified from strain ZL1, and among them we identified bgl8 as the gene encoding the SDG-hydrolyzing β-glucosidase. We sequenced the bgl8 gene, cloned it into the expression vector and then transformed Escherichia coli to construct the recombinant bacteria that could synthesize the target β-glucosidase (BuBGL8). We purified and characterized BuBGL8, which showed maximal activity and stability under the culture conditions of pH 6.0 and 30 °C. SDG (2.0 mg/ml) was converted to SECO by both the purified BuBGL8 (0.035 mg/ml) and crude enzyme extract (0.23 mg crude protein/ml) with the efficiency of more than 90 % after 90 min at the reaction conditions. This is, to our knowledge, the first report of using recombinant bacteria to synthesize the SDG-hydrolyzing β-glucosidase, which could be used to produce SECO from SDG conveniently and highly efficiently.

    Topics: Amino Acid Sequence; Bacteroides; beta-Glucosidase; Butylene Glycols; Cloning, Molecular; DNA, Bacterial; Enzyme Stability; Escherichia coli; Gene Expression; Glucosides; Hydrogen-Ion Concentration; Hydrolysis; Lignans; Models, Molecular; Molecular Docking Simulation; Molecular Sequence Data; Recombinant Proteins; Sequence Alignment; Sequence Analysis, DNA; Temperature

2014
Identification and functional characterization of a flax UDP-glycosyltransferase glucosylating secoisolariciresinol (SECO) into secoisolariciresinol monoglucoside (SMG) and diglucoside (SDG).
    BMC plant biology, 2014, Mar-28, Volume: 14

    Lignans are a class of diphenolic nonsteroidal phytoestrogens often found glycosylated in planta. Flax seeds are a rich source of secoisolariciresinol diglucoside (SDG) lignans. Glycosylation is a process by which a glycosyl group is covalently attached to an aglycone substrate and is catalyzed by uridine diphosphate glycosyltransferases (UGTs). Until now, very little information was available on UGT genes that may play a role in flax SDG biosynthesis. Here we report on the identification, structural and functional characterization of 5 putative UGTs potentially involved in secoisolariciresinol (SECO) glucosylation in flax.. Five UGT genes belonging to the glycosyltransferases' family 1 (EC 2.4.x.y) were cloned and characterized. They fall under four UGT families corresponding to five sub-families referred to as UGT74S1, UGT74T1, UGT89B3, UGT94H1, UGT712B1 that all display the characteristic plant secondary product glycosyltransferase (PSPG) conserved motif. However, diversity was observed within this 44 amino acid sequence, especially in the two peptide sequences WAPQV and HCGWNS known to play a key role in the recognition and binding of diverse aglycone substrates and in the sugar donor specificity. In developing flax seeds, UGT74S1 and UGT94H1 showed a coordinated gene expression with that of pinoresinol-lariciresinol reductase (PLR) and their gene expression patterns correlated with SDG biosynthesis. Enzyme assays of the five heterologously expressed UGTs identified UGT74S1 as the only one using SECO as substrate, forming SECO monoglucoside (SMG) and then SDG in a sequential manner.. We have cloned and characterized five flax UGTs and provided evidence that UGT74S1 uses SECO as substrate to form SDG in vitro. This study allowed us to propose a model for the missing step in SDG lignan biosynthesis.

    Topics: Amino Acid Motifs; Amino Acid Sequence; Biosynthetic Pathways; Butylene Glycols; Chromatography, High Pressure Liquid; Cloning, Molecular; Conserved Sequence; DNA, Complementary; Enzyme Assays; Expressed Sequence Tags; Flax; Gene Expression Profiling; Gene Expression Regulation, Plant; Genes, Plant; Glucosides; Glycosylation; Glycosyltransferases; Kinetics; Lignans; Mass Spectrometry; Molecular Sequence Data; Organ Specificity; Oxidoreductases; Phylogeny; Sesamum

2014
Production of secoisolariciresinol from defatted flaxseed by bacterial biotransformation.
    Journal of applied microbiology, 2012, Volume: 113, Issue:6

    Secoisolariciresinol (SECO) is increasingly recognized for potential clinical application because of its preventive effects against breast and colon cancers, atherosclerosis and diabetes, and its production through biotransformation has been attempted. However, previously reported bacteria all required stringent anaerobic culture conditions, precluding large-scale production. Here, we report the isolation and characterization of bacteria that produce SECO under less stringent anaerobic culture conditions.. Using defatted flaxseed as raw material, we isolated a facultative anaerobic bacterium from human faeces that hydrolysed secoisolariciresinol diglucoside-3-hydroxy-3-methyl glutaric acid (SDG-HMGA) oligomers in flaxseed to produce SECO. Both conventional assays and 16S rRNA gene sequence analysis demonstrated its close relatedness with Bacteroides uniformis. The transformation efficiency of SDG in defatted flaxseed to SECO was more than 80% by this bacterial strain. We investigated factors that might influence fermentation, such as redox potential and pH, for large-scale fermentation of defatted flaxseed to produce SECO.. The method to produce SECO through biotransformation of defatted flaxseed with this bacterial strain is highly efficient and economic.. This bacterial strain can transform SDG to SECO under less stringent anaerobic culture conditions, which will greatly facilitate industry-scale production of SECO.

    Topics: Adult; Bacteroidaceae; Biotransformation; Butylene Glycols; Chromatography, High Pressure Liquid; Feces; Female; Fermentation; Flax; Glucosides; Humans; Hydrolysis; Lignans; Male; Phylogeny; RNA, Ribosomal, 16S; Young Adult

2012
Among plant lignans, pinoresinol has the strongest antiinflammatory properties in human intestinal Caco-2 cells.
    The Journal of nutrition, 2012, Volume: 142, Issue:10

    Dietary lignans show some promising health benefits, but little is known about their fate and activities in the small intestine. The purpose of this study was thus to investigate whether plant lignans are taken up by intestinal cells and modulate the intestinal inflammatory response using the Caco-2 cell model. Six lignan standards [secoisolariciresinol diglucoside (SDG), secoisolariciresinol (SECO), pinoresinol (PINO), lariciresinol, matairesinol (MAT), and hydroxymatairesinol] and their colonic metabolites [enterolactone (ENL) and enterodiol] were studied. First, differentiated cells were exposed to SDG, SECO, PINO, or ENL at increasing concentrations for 4 h, and their cellular contents (before and after deconjugation) were determined by HPLC. Second, in IL-1β-stimulated confluent and/or differentiated cells, lignan effects were tested on different soluble proinflammatory mediators quantified by enzyme immunoassays and on the NF-κB activation pathway by using cells transiently transfected. SECO, PINO, and ENL, but not SDG, were taken up and partly conjugated by cells, which is a saturable conjugation process. PINO was the most efficiently conjugated (75% of total in cells). In inflamed cells, PINO significantly reduced IL-6 by 65% and 30% in confluent and differentiated cells, respectively, and cyclooxygenase (COX)-2-derived prostaglandin E(2) by 62% in confluent cells. In contrast, MAT increased significantly COX-2-derived prostaglandin E(2) in confluent cells. Moreover, PINO dose-dependently decreased IL-6 and macrophage chemoattractant protein-1 secretions and NF-κB activity. Our findings suggest that plant lignans can be absorbed and metabolized in the small intestine and, among the plant lignans tested, PINO exhibited the strongest antiinflammatory properties by acting on the NF-κB signaling pathway, possibly in relation to its furofuran structure and/or its intestinal metabolism.

    Topics: 4-Butyrolactone; Anti-Inflammatory Agents; Butylene Glycols; Caco-2 Cells; Cell Differentiation; Chemokine CCL2; Chromatography, High Pressure Liquid; Cyclooxygenase 2; Furans; Glucosides; Humans; Interleukin-1beta; Interleukin-6; Interleukin-8; Intestines; Lignans; NF-kappa B; Plant Extracts; Signal Transduction

2012
Role of bifidobacteria in the activation of the lignan secoisolariciresinol diglucoside.
    Applied microbiology and biotechnology, 2011, Volume: 92, Issue:1

    Lignans are ubiquitous plant polyphenols, which have relevant health properties being the major phytoestrogens occurring in Western diets. Secoisolariciresinol (SECO) is the major dietary lignan mostly found in plants as secoisolariciresinol diglucoside (SDG). To exert biological activity, SDG requires being deglycosylated to SECO and transformed to enterodiol (ED) and enterolactone (EL) by the intestinal microbes. The involvement of bifidobacteria in the transformation of lignans glucosides has been investigated for the first time in this study. Twenty-eight strains were assayed for SDG and SECO activation. They all failed to transform SECO into reduced metabolites, excluding any role in ED and EL production. Ten Bifidobacterium cultures partially hydrolyzed SDG, giving both SECO and the monoglucoside with yields < 25%. When the cell-free extracts were assayed in SDG transformation, seven additional strains were active in the hydrolysis. Cellobiose induced β-glucosidase activity and caused the enhancement of both the rate of SDG hydrolysis and the final yield of SECO only in the strains capable of SDG bioconversion. The highest SDG conversion to SECO was achieved by Bifidobacterium pseudocatenulatum WC 401, which exhibited 75% yield in cellobiose-based medium after 48 h. These results indicate that SDG hydrolysis is not a common feature in Bifidobacterium genus, but selected probiotic strains can be combined to β-glucoside-based prebiotics to enhance the release of SECO, thus improving its bioavailability for absorption by colonic mucosa and/or the biotransformation to ED and EL by other intestinal microorganisms.

    Topics: 4-Butyrolactone; Bifidobacterium; Biotransformation; Butylene Glycols; Glucosides; Lignans

2011
Determination of lignans in flaxseed using liquid chromatography with time-of-flight mass spectrometry.
    Journal of chromatography. A, 2009, Jan-09, Volume: 1216, Issue:2

    A new method of flaxseed-derived lignan determination was developed using HPLC with high-resolution time-of-flight MS (TOF-MS), optimized, and compared to two existing methods (HPLC/MS/MS and GC/MS). The limits of detection (LODs) for HPLC/TOF-MS (0.002-0.043 pg) were comparable with those of the optimized and improved HPLC/MS/MS (0.001-0.015 pg), whereas the LODs for the optimized GC/MS were higher (0.02-3.0 pg, yet lower than reported before). Using the newly developed detection and separation methods, several key flaxseed sample preparation parameters (including extraction, hydrolysis, and sample purification) were evaluated resulting in the development of efficient protocol for lignan quantification from flaxseed hulls and embryos. The results confirmed the importance of quantification of both aglycones and unhydrolyzed glucosides in order to obtain the total lignan estimates.

    Topics: Antioxidants; Butylene Glycols; Chemical Fractionation; Chromatography, High Pressure Liquid; Chromatography, Liquid; Flax; Gas Chromatography-Mass Spectrometry; Glucosides; Least-Squares Analysis; Lignans; Mass Spectrometry; Models, Chemical; Reproducibility of Results; Sensitivity and Specificity; Solid Phase Microextraction; Tandem Mass Spectrometry

2009
Effects of the flaxseed lignans secoisolariciresinol diglucoside and its aglycone on serum and hepatic lipids in hyperlipidaemic rats.
    The British journal of nutrition, 2009, Volume: 102, Issue:3

    The present study involved a comparative analysis of the effects of purified flaxseed lignans, secoisolariciresinol diglucoside (SDG) and its aglycone metabolite (SECO), in hyperlipidaemic rats. For hypercholesterolaemia, female Wistars (six rats per group) were fed a standard or 1 % cholesterol diet and orally administered 0, 3 or 6 mg SDG/kg or 0, 1.6 or 3.2 mg SECO/kg body weight once daily for 4 weeks. Hypertriacylglycerolaemia was induced in male Sprague-Dawley rats (ten rats per group) by supplementing tap water with 10 % fructose. These rats were orally administered 0, 3 or 6 mg SDG/kg body weight once daily for 2 weeks. Fasting blood samples (12 h) were collected predose and at the end of the dosing period for serum lipid analyses. Rats were killed and livers rapidly excised and sectioned for lipid, mRNA and histological analyses. Chronic administration of equimolar amounts of SDG and SECO caused similar dose-dependent reductions in rate of body-weight gain and in serum total and LDL-cholesterol levels and hepatic lipid accumulation. SDG and SECO failed to alter hepatic gene expression of commonly reported regulatory targets of lipid homeostasis. SDG had no effect on serum TAG, NEFA, phospholipids and rate of weight gain in 10 % fructose-supplemented rats. In conclusion, our data suggest that the lignan component of flaxseed contributes to the hypocholesterolaemic effects of flaxseed consumption observed in humans. Future studies plan to identify the biochemical mechanism(s) through which flaxseed lignans exert their beneficial effects and the lignan form(s) responsible.

    Topics: Animals; Base Sequence; Body Weight; Butylene Glycols; Dose-Response Relationship, Drug; Female; Flax; Fructose; Gene Expression; Glucosides; Hyperlipidemias; Lignans; Lipids; Liver; Male; Models, Animal; Molecular Sequence Data; Random Allocation; Rats; Rats, Sprague-Dawley; Rats, Wistar

2009
Metabolism of the lignan macromolecule into enterolignans in the gastrointestinal lumen as determined in the simulator of the human intestinal microbial ecosystem.
    Journal of agricultural and food chemistry, 2008, Jun-25, Volume: 56, Issue:12

    Estrogenic plant compounds from the human diet such as the lignan secoisolariciresinol diglucoside (SDG, 1) can exert biological activity in the human body upon ingestion and bioactivation to enterodiol (END, 5) and enterolactone (ENL, 6). Bioavailability of lignans is influenced by the food matrix and gut microbial action, of which the latter is subject to a large interindividual variation. In this study, the fate of the lignan precursor SDG, present in the lignan macromolecule of flax seed ( Linum usitatissimum), was determined during an artificial stomach and small intestinal digestion and during metabolism by two different enterolignan phenotypes in a TWINSHIME environment (TWIN Simulator of the Human Intestinal Microbial Ecosystem). The lignan macromolecule acted as a delivery system of SDG in the large intestine. SDG was only hydrolyzed into secoisolariciresinol (SECO, 2) through microbial action in the ascending colon, after which it was bioactivated into enterolignans from the transverse colon onward. Single demethylation was a first step in the bioactivation, followed by dehydroxylation. Enterolignan phenotypes remained stable throughout the experimental period. The establishment of END and ENL production equilibria reflected the subdominance of ENL-producing bacteria in the gastrointestinal tract.

    Topics: Bacteria; Butylene Glycols; Diet; Ecosystem; Estrogens; Gastrointestinal Tract; Glucosides; Humans; Lignans; Macromolecular Substances; Models, Biological

2008
AAPH-mediated antioxidant reactions of secoisolariciresinol and SDG.
    Organic & biomolecular chemistry, 2007, Feb-21, Volume: 5, Issue:4

    Secoisolariciresinol (SECO ) is the major lignan found in flaxseed (Linum usitatissimum L.) and is present in a polymer that contains secoisolariciresinol diglucoside (SDG ). SECO, SDG and the polymer are known to have a number of health benefits, including reduction of serum cholesterol levels, delay in the onset of type II diabetes and decreased formation of breast, prostate and colon cancers. The health benefits of SECO and SDG may be partially attributed to their antioxidant properties. To better understand their antioxidant properties, SECO and SDG were oxidized using 2,2'-azobis(2-amidinopropane), an in vitro model of radical scavenging. The major lignan radical-scavenging oxidation products and their formation over time were determined. SDG was converted to four major products, which were the result of a phenoxyl radical intermediate. One of these products, a dimer of SDG, decomposed under the reaction conditions to form two of the other major products, and . SECO was converted to five major products, two of which were also the result of a phenoxyl radical intermediate. The remaining products were the result of an unexpected alkoxyl radical intermediate. The phenol oxidation products were stable under the reaction conditions, whereas two of the alcohol oxidation products decomposed. In general, only one phenol group on the lignans was oxidized, suggesting that the number of phenols per molecule may not predict radical scavenging antioxidant ability of lignans. Finally, SECO is a superior antioxidant to SDG, and it may be that the additional alcohol oxidation pathway contributes to its greater antioxidant ability.

    Topics: Amidines; Antioxidants; Butylene Glycols; Flax; Free Radical Scavengers; Glucosides; Lignans; Molecular Conformation; Oxidation-Reduction; Stereoisomerism; Time Factors

2007
Antioxidant activities of the flaxseed lignan secoisolariciresinol diglucoside, its aglycone secoisolariciresinol and the mammalian lignans enterodiol and enterolactone in vitro.
    Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 2007, Volume: 45, Issue:11

    The flaxseed lignan secoisolariciresinol diglucoside (SDG) and mammalian lignans enterodiol (ED) and enterolactone (EL) were previously shown to be effective antioxidants against DNA damage and lipid peroxidation. Others reported inhibition of activated cell chemiluminescence by supra-physiological concentrations of secoisolariciresinol (SECO), ED and EL. Thus, we evaluated the antioxidant efficacy of potential physiological concentrations of SDG, SECO, ED and EL against 1,1-diphenyl-2-picrylhydrazyl (DPPH()), and 2,2'-azo-bis(2-amidinopropane) dihydrochloride (AAPH)-initiated peroxyl radical plasmid DNA damage and phosphatidylcholine liposome lipid peroxidation. SDG and SECO were effective (p<0.01) antioxidants against DPPH() at 25-200muM; whereas, ED and EL were inactive. Efficacy of lignans and controls against AAPH peroxyl radical-induced DNA damage was: SDG>SECO=17alpha-estradiol>ED=EL>genistein>daidzein. Lignan efficacy against AAPH-induced liposome lipid peroxidation was: SDG>SECO=ED=EL. Plant lignan antioxidant activity was attributed to the 3-methoxy-4-hydroxyl substituents of SDG and SECO, versus the meta mono-phenol structures of ED and EL. Benzylic hydrogen abstraction and potential resonance stabilization of phenoxyl radicals in an aqueous environment likely contributed to the antioxidant activity of the mammalian lignans. These represent likely extra- and intracellular antioxidant activities of flax-derived lignans at concentrations potentially achievable in vivo.

    Topics: 4-Butyrolactone; Animals; Biphenyl Compounds; Butylene Glycols; Flax; Free Radical Scavengers; Glucosides; Hydrazines; Lignans; Liposomes; Mammals; Molecular Structure; Picrates; Seeds

2007
Phylogeny of human intestinal bacteria that activate the dietary lignan secoisolariciresinol diglucoside.
    FEMS microbiology ecology, 2006, Volume: 55, Issue:3

    The human intestinal microbiota is essential for the conversion of the dietary lignan secoisolariciresinol diglucoside (SDG) via secoisolariciresinol (SECO) to the enterolignans enterodiol (ED) and enterolactone (EL). However, knowledge of the species that catalyse the underlying reactions is scant. Therefore, we focused our attention on the identification of intestinal bacteria involved in the conversion of SDG. Strains of Bacteroides distasonis, Bacteroides fragilis, Bacteroides ovatus and Clostridium cocleatum, as well as the newly isolated strain Clostridium sp. SDG-Mt85-3Db, deglycosylated SDG. Demethylation of SECO was catalysed by strains of Butyribacterium methylotrophicum, Eubacterium callanderi, Eubacterium limosum and Peptostreptococcus productus. Dehydroxylation of SECO was catalysed by strains of Clostridium scindens and Eggerthella lenta. Finally, the newly isolated strain ED-Mt61/PYG-s6 catalysed the dehydrogenation of ED to EL. The results indicate that the activation of SDG involves phylogenetically diverse bacteria, most of which are members of the dominant human intestinal microbiota.

    Topics: 4-Butyrolactone; Bacteria, Anaerobic; Butylene Glycols; Culture Media; Glucosides; Humans; Intestines; Lignans; Phylogeny

2006
Sesamin is one of the major precursors of mammalian lignans in sesame seed (Sesamum indicum) as observed in vitro and in rats.
    The Journal of nutrition, 2006, Volume: 136, Issue:4

    Plant lignans occur in many foods, with flaxseed presently recognized as the richest source. Some plant lignans can be converted by intestinal microbiota to the mammalian lignans, enterodiol and enterolactone, which may have protective effects against hormone-related diseases such as breast cancer. This study determined whether plant lignans in sesame seed, particularly sesamin, could be metabolized to the mammalian lignans. The total plant lignan concentration in sesame seed (2180 micromol/100 g) was higher than that in flaxseed (820 micromol/100 g). In vitro fermentation with human fecal inoculum showed conversion of sesamin to the mammalian lignans, although at a lower rate (1.1%) compared with that of secoisolariciresinol diglucoside (57.2%). However, when fed to female Sprague-Dawley rats for 10 d, sesamin (15 mg/kg body weight) and a 10% sesame seed diet resulted in greater (P < 0.05) urinary mammalian lignan excretion (3.2 and 11.2 micromol/d, respectively), than the control (< 0.05 micromol/d). We conclude that sesame seed is a rich source of mammalian lignan precursors and sesamin is one of them. From intermediate metabolites of sesamin identified in rat urine by GC-MS, a tentative metabolic pathway of sesamin to mammalian lignans is suggested.

    Topics: Animals; Butylene Glycols; Dioxoles; Feces; Female; Fermentation; Flax; Gas Chromatography-Mass Spectrometry; Glucosides; Humans; Lignans; Mass Spectrometry; Rats; Rats, Sprague-Dawley; Seeds; Sesamum

2006