secoisolariciresinol-diglucoside and 2-3-bis(3--hydroxybenzyl)butane-1-4-diol

secoisolariciresinol-diglucoside has been researched along with 2-3-bis(3--hydroxybenzyl)butane-1-4-diol* in 17 studies

Other Studies

17 other study(ies) available for secoisolariciresinol-diglucoside and 2-3-bis(3--hydroxybenzyl)butane-1-4-diol

ArticleYear
Oral Pharmacokinetics of Enriched Secoisolariciresinol Diglucoside and Its Polymer in Rats.
    Journal of natural products, 2021, 06-25, Volume: 84, Issue:6

    Secoisolariciresinol diglucoside (SDG) is the principal lignan of flaxseed and precursor of its aglycone, secoisolariciresinol (SECO), and the mammalian lignans enterolactone (EL) and enterodiol (ED), the putative bioactive forms of oral administration of SDG. SDG is present in the seed hull as an ester-linked polymer. Although extraction and purification of SDG monomer is costly, the use of naturally occurring SDG in polymer form may offer a more economical approach for delivery of this precursor. The extent of SDG release from the polymer and subsequent bioavailability of SDG metabolites are unknown. To understand the relative bioavailability of SDG polymer, this study examined the comparative bioavailability of enriched SDG and SDG polymer in rats after a single oral SDG equivalent dose (40 mg/kg). A validated LC-MS/MS method quantified SDG and its metabolites in rat plasma following serial blood collections. SDG remained undetectable in rat plasma samples. Unconjugated SECO was detected in plasma after 0.25 h. Unconjugated ED was observed after 8 h (3.4 ± 3.3 ng/mL) and 12 h (6.2 ± 3.3 ng/mL) for enriched SDG and SDG polymer, respectively. Total (conjugated and unconjugated) ED and EL resulting from enriched SDG and SDG polymer reached similar maximal concentrations between 11 and 12 h and demonstrated similar total body exposures (AUC values). These data suggest a similar pharmacokinetic profile between the enriched and polymer form of SDG, providing support for the use of SDG polymer as a more economical precursor for SECO, ED, and EL in applications of chronic disease management.

    Topics: 4-Butyrolactone; Animals; Biological Availability; Butylene Glycols; Female; Flax; Glucosides; Lignans; Molecular Structure; Polymers; Rats; Rats, Wistar; Seeds

2021
The anti-cancer effect of flaxseed lignan derivatives on different acute myeloid leukemia cancer cells.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2020, Volume: 132

    Flaxseeds have been known for their anti-cancerous effects due to the high abundance of lignans released upon ingestion. The most abundant lignan, secoisolariciresinol diglucoside (SDG), is ingested during the dietary intake of flax, and is then metabolized in the gut into two mammalian lignan derivatives, Enterodiol (END) and Enterolactone (ENL). These lignans were previously reported to possess anti-tumor effects against breast, colon, and lung cancer. This study aims to investigate the potential anti-cancerous effect of the flaxseed lignans SDG, END and ENL on acute myeloid leukemia cells (AML) in vitro and to decipher the underlying molecular mechanism. AML cell lines, (KG-1 and Monomac-1) and a normal lymphoblastic cell line were cultured and treated with the purified lignans. ENL was found to be the most promising lignan, as it exhibits a significant selective dose- and time-dependent cytotoxic effect in both AML cell lines, contrary to normal cells. The cytotoxic effects observed were attributed to apoptosis induction, as revealed by an increase in Annexin V staining of AML cells with increasing ENL concentrations. The increase in the percentage of cells in the pre-G phase, in addition to cell death ELISA analysis, validated cellular and DNA fragmentation respectively. Analysis of protein expression using western blots confirmed the activation of the intrinsic apoptotic pathway upon ENL treatment. This was also accompanied by an increase in ROS production intracellularly. In conclusion, this study demonstrates that ENL has promising anti-cancer effects in AML cell lines in vitro, by promoting DNA fragmentation and the intrinsic apoptotic pathway, highlighting the protective health benefits of flax seeds in leukemia.

    Topics: 4-Butyrolactone; Antineoplastic Agents, Phytogenic; Apoptosis; Butylene Glycols; Cell Cycle Checkpoints; Cell Line, Tumor; Cell Proliferation; Child; Female; Flax; Glucosides; Humans; Leukemia, Myeloid, Acute; Lignans; Plant Extracts; Reactive Oxygen Species; Seeds

2020
Detection of novel metabolites of flaxseed lignans in vitro and in vivo.
    Molecular nutrition & food research, 2016, Volume: 60, Issue:7

    This study aimed to improve the knowledge of secoisolariciresinol diglucoside (SDG) transformation by human gut microbiota.. SDG-supplemented microbiota cultures were inoculated with the feces of five subjects. The same volunteers received a flaxseed supplement for 7 days. SDG metabolites in cultures, feces, and urine were monitored by LC-ESI-QTOF and LC-DAD. In all cultures, SDG was deglycosylated to secoisolariciresinol (SECO) within 12 h. SECO underwent successive dehydroxylations and demethylations yielding enterodiol (4-18% conversion) and enterolactone (0.2-6%) after 24 h. Novel intermediates related to SECO, matairesinol (MATA), and anhydrosecoisolariciresinol (AHS) were identified in fecal cultures. These metabolites were also found after flaxseed consumption in feces and urine (in approximate amounts between 0.01-47.03 μg/g and 0.01-13.49 μg/mL, respectively) in their native form and/or modified by phase II human enzymes (glucuronide, sulfate and sulfoglucuronide conjugates).. Derivatives of MATA and AHS are described for the first time as intermediates of SDG biotransformation by intestinal bacteria, providing a more comprehensive knowledge of lignan intestinal metabolism. The transformations observed in vitro seem to occur in vivo as well. The detection in urine of SDG intermediates indicates their gut absorption, opening new perspectives on the study of their systemic biological effects.

    Topics: 4-Butyrolactone; Adult; Bifidobacterium pseudocatenulatum; Butylene Glycols; Dietary Supplements; Feces; Female; Flax; Furans; Gastrointestinal Microbiome; Glucosides; Humans; Intestinal Mucosa; Intestines; Lignans; Male; Middle Aged; Prebiotics; Probiotics; Young Adult

2016
Comparative pharmacokinetics of purified flaxseed and associated mammalian lignans in male Wistar rats.
    The British journal of nutrition, 2015, Mar-14, Volume: 113, Issue:5

    Consumption of flaxseed lignans is associated with various health benefits; however, little is known about the bioavailability of purified lignans in flaxseed. Data on their bioavailability and hence pharmacokinetics (PK) are necessary to better understand their role in putative health benefits. In the present study, we conducted a comparative PK analysis of the principal lignan of flaxseed, secoisolariciresinol diglucoside (SDG), and its primary metabolites, secoisolariciresinol (SECO), enterodiol (ED) and enterolactone (EL) in rats. Purified lignans were intravenously or orally administered to each male Wistar rat. SDG and its primary metabolites SECO, ED and EL were administered orally at doses of 40, 40, 10 and 10 mg/kg, respectively, and intravenously at doses of 20, 20, 5 and 1 mg/kg, respectively. Blood samples were collected at 0 (pre-dose), 5, 10, 15, 20, 30 and 45 min, and at 1, 2, 4, 6, 8, 12 and 24 h post-dosing, and serum samples were analysed. PK parameters and oral bioavailability of purified lignans were determined by non-compartmental methods. In general, administration of the flaxseed lignans SDG, SECO and ED demonstrated a high systemic clearance, a large volume of distribution and short half-lives, whereas administration of EL at the doses of 1 mg/kg (intravenously) and 10 mg/kg (orally administered) killed the rats within a few hours of dosing, precluding a PK analysis of this lignan. PK parameters of flaxseed lignans exhibited the following order: systemic clearance, SDG < SECO < ED; volume of distribution, SDG < SECO < ED; half-life, SDG < ED < SECO. The percentage of oral bioavailability was 0, 25 and < 1 % for SDG, SECO and ED, respectively.

    Topics: 4-Butyrolactone; Administration, Oral; Animals; Biological Availability; Butylene Glycols; Dietary Supplements; Dose-Response Relationship, Drug; Estrogens; Flax; Glucosides; Half-Life; Injections, Intravenous; Intestinal Absorption; Kinetics; Lignans; Male; Metabolic Clearance Rate; Phytoestrogens; Random Allocation; Rats, Wistar; Seeds

2015
Permeability and conjugative metabolism of flaxseed lignans by Caco-2 human intestinal cells.
    Journal of natural products, 2014, Jan-24, Volume: 77, Issue:1

    Reports in the literature associate the dietary intake of flaxseed lignans with a number of health benefits. The major lignan found in flaxseed, secoisolariciresinol diglucoside (1), undergoes metabolism principally to secoisolariciresinol (2), enterodiol (3), and enterolactone (4) in the human gastrointestinal tract. Systemically, lignans are present largely as phase II enzyme conjugates. To improve understanding of the oral absorption characteristics, a systematic evaluation of the intestinal permeation was conducted and the conjugative metabolism potential of these lignans using the polarized Caco-2 cell system was analyzed. For permeation studies, lignans (100 μM) were added to acceptor or donor compartments and samples were taken at 2 h. For metabolism studies, lignans (100 μM) were incubated in Caco-2 for a maximum of 48 h. Cell lysates and media were treated with β-glucuronidase/sulfatase, and lignan concentrations were determined using HPLC. Apical-to-basal permeability coefficients for 2-4 were 8.0 ± 0.4, 7.7 ± 0.2, and 13.7 ± 0.2 (×10(-6)) cm/s, respectively, whereas efflux ratios were 0.8-1.2, consistent with passive diffusion. The permeation of compound 1 was not detected. The extent of conjugation after 48 h was <3%, ∼95%, ∼90%, and >99% for 1-4, respectively. These data suggest 2-4, but not 1 undergo passive permeation and conjugative metabolism by Caco-2 cells.

    Topics: 4-Butyrolactone; Algorithms; Butylene Glycols; Caco-2 Cells; Chromatography, High Pressure Liquid; Flax; Glucosides; Humans; Intestinal Mucosa; Lignans; Molecular Structure; Permeability

2014
Bioaccessibility of lignans from flaxseed (Linum usitatissimum L.) determined by single-batch in vitro simulation of the digestive process.
    Journal of the science of food and agriculture, 2014, Volume: 94, Issue:9

    Flaxseed is an important source of lignan secoisolariciresinol diglucoside (SDG) and its aglycone, secoisolariciresinol (SECO). These phenolic compounds can be metabolized to the mammalian lignans enterodiol (ED) and enterolactone (EL) by human intestinal microflora. Flaxseed lignans are known for their potential health benefits, which are attributed to their antioxidant and phytoestrogenic properties. The focus of this study was to determine the bioaccessibility of plant and mammalian lignans in whole flaxseed (WF) and flaxseed flour (FF) throughout the entire digestive process. Moreover, the metabolic activity of intestinal microflora was evaluated.. A single-batch in vitro simulation of the digestive process was performed, including fermentation by the intestinal microflora in the colon. Bioaccessibility was calculated as (free lignan)/(total lignan). In digested WF, the bioaccessibility values of SECO, ED and EL were 0.75%, 1.56% and 1.23%, respectively. Conversely, in digested FF, the bioaccessibility values of SDG, ED and EL were 2.06%, 2.72% and 1.04%, respectively. The anaerobic count and short-chain fatty acids indicate that bacteria survival and carbohydrate fermentation occurred.. The contents of both SDG and ED were significantly higher in digested FF than in digested WF. FF facilitated the action of intestinal bacteria to release SDG and metabolize ED.

    Topics: 4-Butyrolactone; Bacteria, Anaerobic; Biological Availability; Butylene Glycols; Colon; Fatty Acids, Volatile; Fermentation; Flax; Glucosides; Humans; In Vitro Techniques; Lignans; Seeds

2014
Among plant lignans, pinoresinol has the strongest antiinflammatory properties in human intestinal Caco-2 cells.
    The Journal of nutrition, 2012, Volume: 142, Issue:10

    Dietary lignans show some promising health benefits, but little is known about their fate and activities in the small intestine. The purpose of this study was thus to investigate whether plant lignans are taken up by intestinal cells and modulate the intestinal inflammatory response using the Caco-2 cell model. Six lignan standards [secoisolariciresinol diglucoside (SDG), secoisolariciresinol (SECO), pinoresinol (PINO), lariciresinol, matairesinol (MAT), and hydroxymatairesinol] and their colonic metabolites [enterolactone (ENL) and enterodiol] were studied. First, differentiated cells were exposed to SDG, SECO, PINO, or ENL at increasing concentrations for 4 h, and their cellular contents (before and after deconjugation) were determined by HPLC. Second, in IL-1β-stimulated confluent and/or differentiated cells, lignan effects were tested on different soluble proinflammatory mediators quantified by enzyme immunoassays and on the NF-κB activation pathway by using cells transiently transfected. SECO, PINO, and ENL, but not SDG, were taken up and partly conjugated by cells, which is a saturable conjugation process. PINO was the most efficiently conjugated (75% of total in cells). In inflamed cells, PINO significantly reduced IL-6 by 65% and 30% in confluent and differentiated cells, respectively, and cyclooxygenase (COX)-2-derived prostaglandin E(2) by 62% in confluent cells. In contrast, MAT increased significantly COX-2-derived prostaglandin E(2) in confluent cells. Moreover, PINO dose-dependently decreased IL-6 and macrophage chemoattractant protein-1 secretions and NF-κB activity. Our findings suggest that plant lignans can be absorbed and metabolized in the small intestine and, among the plant lignans tested, PINO exhibited the strongest antiinflammatory properties by acting on the NF-κB signaling pathway, possibly in relation to its furofuran structure and/or its intestinal metabolism.

    Topics: 4-Butyrolactone; Anti-Inflammatory Agents; Butylene Glycols; Caco-2 Cells; Cell Differentiation; Chemokine CCL2; Chromatography, High Pressure Liquid; Cyclooxygenase 2; Furans; Glucosides; Humans; Interleukin-1beta; Interleukin-6; Interleukin-8; Intestines; Lignans; NF-kappa B; Plant Extracts; Signal Transduction

2012
Role of bifidobacteria in the activation of the lignan secoisolariciresinol diglucoside.
    Applied microbiology and biotechnology, 2011, Volume: 92, Issue:1

    Lignans are ubiquitous plant polyphenols, which have relevant health properties being the major phytoestrogens occurring in Western diets. Secoisolariciresinol (SECO) is the major dietary lignan mostly found in plants as secoisolariciresinol diglucoside (SDG). To exert biological activity, SDG requires being deglycosylated to SECO and transformed to enterodiol (ED) and enterolactone (EL) by the intestinal microbes. The involvement of bifidobacteria in the transformation of lignans glucosides has been investigated for the first time in this study. Twenty-eight strains were assayed for SDG and SECO activation. They all failed to transform SECO into reduced metabolites, excluding any role in ED and EL production. Ten Bifidobacterium cultures partially hydrolyzed SDG, giving both SECO and the monoglucoside with yields < 25%. When the cell-free extracts were assayed in SDG transformation, seven additional strains were active in the hydrolysis. Cellobiose induced β-glucosidase activity and caused the enhancement of both the rate of SDG hydrolysis and the final yield of SECO only in the strains capable of SDG bioconversion. The highest SDG conversion to SECO was achieved by Bifidobacterium pseudocatenulatum WC 401, which exhibited 75% yield in cellobiose-based medium after 48 h. These results indicate that SDG hydrolysis is not a common feature in Bifidobacterium genus, but selected probiotic strains can be combined to β-glucoside-based prebiotics to enhance the release of SECO, thus improving its bioavailability for absorption by colonic mucosa and/or the biotransformation to ED and EL by other intestinal microorganisms.

    Topics: 4-Butyrolactone; Bifidobacterium; Biotransformation; Butylene Glycols; Glucosides; Lignans

2011
Milk concentration of the mammalian lignan enterolactone, milk production, milk fatty acid profile, and digestibility in dairy cows fed diets containing whole flaxseed or flaxseed meal.
    The Journal of dairy research, 2009, Volume: 76, Issue:3

    A total of 24 lactating Holstein cows averaging 620 (SE=29) kg of body weight were allotted at week 17 of lactation to eight groups of three cows blocked for similar days in milk to determine the effects of feeding two sources of the plant lignan precursor secoisolariciresinol diglucoside, whole flaxseed and flaxseed meal, on concentrations of the mammalian lignans (enterodiol and enterolactone) in milk. Feed intake, digestion, milk production and milk composition were also determined to compare the use of whole flaxseed and flaxseed meal for milk production. Cows within each block were assigned to one of the three isonitrogenous and isoenergetic total mixed diets: no flaxseed product; 10% flaxseed meal; or 10% whole flaxseed in the dry matter. The experiment was carried out from week 17 to week 21 of lactation and diets were fed at ad-libitum intake. The mammalian lignan, enterodiol, was not detected in the milk of cows. Cows fed whole flaxseed and flaxseed meal had greater concentrations of enterolactone in milk than those fed the control diet. Feed intake, milk production and milk composition were also similar for all diets, indicating that both flaxseed meal and whole flaxseed are suitable feed ingredients for milk production of cows in mid lactation. The results provide new information on the conversion of plant secoisolariciresinol diglucoside from two flaxseed products into mammalian lignans in dairy cows.

    Topics: 4-Butyrolactone; Animals; Butylene Glycols; Cattle; Diet; Digestion; Fatty Acids; Flax; Glucosides; Lactation; Lignans; Male; Milk; Seeds

2009
Flaxseed lignan attenuates high-fat diet-induced fat accumulation and induces adiponectin expression in mice.
    The British journal of nutrition, 2008, Volume: 100, Issue:3

    Flaxseed lignan secoisolariciresinol diglucoside (SDG) has been reported to prevent and alleviate lifestyle-related diseases including diabetes and hypercholesterolaemic atherosclerosis. This study assesses the effect of SDG on the development of diet-induced obesity in mice and the effect of the SDG metabolite enterodiol (END) on adipogenesis in 3T3-L1 adipocytes. We compared body weight, visceral fat weight, liver fat content, serum parameters, mRNA levels of lipid metabolism-related enzymes and adiponectin in mice fed either a low-fat diet (5 % TAG), high-fat diet (30 % TAG) or high-fat diet containing 0.5 and 1.0 % (w/w) SDG for 4 weeks. Administration of SDG to mice significantly reduced high-fat diet-induced visceral and liver fat accumulation, hyperlipaemia, hypercholesterolaemia, hyperinsulinaemia and hyperleptinaemia. SDG also suppressed sterol regulatory element binding protein 1c mRNA level in the liver and induced increases in the adiponectin mRNA level in the white adipose tissue and carnitine palmitoyltransferase I mRNA level in the skeletal muscle. Differentiated 3T3-L1 adipocytes were treated with 0, 5, 10 and 20 mumol/l END and then assayed for mRNA expression of adipogenesis-related genes and DNA binding activity of PPARgamma to the PPAR response element consensus sequence. END induced adipogenesis-related gene mRNA expression including adiponectin, leptin, glucose transporter 4 and PPARgamma, and induced PPARgamma DNA binding activity in 3T3-L1 adipocytes. In conclusion, SDG induced adiponectin mRNA expression and showed beneficial effects on lipid metabolism in diet-induced obesity in mice. Flaxseed lignans are suggested to regulate adipogenesis-related gene expressions through an increase in PPARgamma DNA binding activity.

    Topics: 3T3-L1 Cells; Adipocytes; Adiponectin; Animals; Butylene Glycols; Cholesterol; Dietary Fats; Flax; Glucosides; Insulin; Leptin; Lignans; Male; Mice; Mice, Inbred C57BL; Obesity; PPAR gamma; RNA, Messenger; Triglycerides

2008
Antioxidant activities of the flaxseed lignan secoisolariciresinol diglucoside, its aglycone secoisolariciresinol and the mammalian lignans enterodiol and enterolactone in vitro.
    Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 2007, Volume: 45, Issue:11

    The flaxseed lignan secoisolariciresinol diglucoside (SDG) and mammalian lignans enterodiol (ED) and enterolactone (EL) were previously shown to be effective antioxidants against DNA damage and lipid peroxidation. Others reported inhibition of activated cell chemiluminescence by supra-physiological concentrations of secoisolariciresinol (SECO), ED and EL. Thus, we evaluated the antioxidant efficacy of potential physiological concentrations of SDG, SECO, ED and EL against 1,1-diphenyl-2-picrylhydrazyl (DPPH()), and 2,2'-azo-bis(2-amidinopropane) dihydrochloride (AAPH)-initiated peroxyl radical plasmid DNA damage and phosphatidylcholine liposome lipid peroxidation. SDG and SECO were effective (p<0.01) antioxidants against DPPH() at 25-200muM; whereas, ED and EL were inactive. Efficacy of lignans and controls against AAPH peroxyl radical-induced DNA damage was: SDG>SECO=17alpha-estradiol>ED=EL>genistein>daidzein. Lignan efficacy against AAPH-induced liposome lipid peroxidation was: SDG>SECO=ED=EL. Plant lignan antioxidant activity was attributed to the 3-methoxy-4-hydroxyl substituents of SDG and SECO, versus the meta mono-phenol structures of ED and EL. Benzylic hydrogen abstraction and potential resonance stabilization of phenoxyl radicals in an aqueous environment likely contributed to the antioxidant activity of the mammalian lignans. These represent likely extra- and intracellular antioxidant activities of flax-derived lignans at concentrations potentially achievable in vivo.

    Topics: 4-Butyrolactone; Animals; Biphenyl Compounds; Butylene Glycols; Flax; Free Radical Scavengers; Glucosides; Hydrazines; Lignans; Liposomes; Mammals; Molecular Structure; Picrates; Seeds

2007
Enantioselective dehydroxylation of enterodiol and enterolactone precursors by human intestinal bacteria.
    Biological & pharmaceutical bulletin, 2007, Volume: 30, Issue:11

    During the course of experiments on the transformation of lignans to phytoestrogenic substances, such as enterodiol (END) and enterolactone (ENL), a previously isolated bacterium, Eubacterium (E.) sp. strain SDG-2, capable of phenolic p-dehydroxylation in the biotransformation of secoisolariciresinol diglucoside to END and ENL, was concluded to be Eggerthella (Eg.) lenta (Eg. sp. SDG-2) on the basis of 16S rRNA gene sequence analysis. The bacterium could transform (+)-dihydroxyenterodiol (DHEND, 3a) to (+)-END (1a), but not for (-)-DHEND (3b) to (-)-END (1b) under anaerobic conditions. By incubation of a mixture of (+)- and (-)-dihydroxyenterolactone (DHENL, 4a and 4b) with Eg. sp. SDG-2, only (-)-DHENL (4b) was converted to (-)-ENL (2b), selectively. On the other hand, we isolated a different bacterium, strain ARC-1, capable of dehydroxylating (-)-DHEND (3b) to (-)-END (1b) from human feces. Strain ARC-1 could transform not only (-)-DHEND (3b) to (-)-END (1b), but also (+)-DHENL (4a) to (+)-ENL (2b). However, the bacterium could not transform (+)-DHEND (3a) and (-)-DHENL (4b). Both bacterial strains demonstrated different enantioselective dehydroxylation.

    Topics: 4-Butyrolactone; Bacteria, Anaerobic; Biotransformation; Butylene Glycols; Eubacterium; Feces; Glucosides; Humans; Hydroxylation; Intestines; Lignans; Molecular Structure; Phylogeny; RNA, Bacterial; RNA, Ribosomal, 16S; Stereoisomerism

2007
Phylogeny of human intestinal bacteria that activate the dietary lignan secoisolariciresinol diglucoside.
    FEMS microbiology ecology, 2006, Volume: 55, Issue:3

    The human intestinal microbiota is essential for the conversion of the dietary lignan secoisolariciresinol diglucoside (SDG) via secoisolariciresinol (SECO) to the enterolignans enterodiol (ED) and enterolactone (EL). However, knowledge of the species that catalyse the underlying reactions is scant. Therefore, we focused our attention on the identification of intestinal bacteria involved in the conversion of SDG. Strains of Bacteroides distasonis, Bacteroides fragilis, Bacteroides ovatus and Clostridium cocleatum, as well as the newly isolated strain Clostridium sp. SDG-Mt85-3Db, deglycosylated SDG. Demethylation of SECO was catalysed by strains of Butyribacterium methylotrophicum, Eubacterium callanderi, Eubacterium limosum and Peptostreptococcus productus. Dehydroxylation of SECO was catalysed by strains of Clostridium scindens and Eggerthella lenta. Finally, the newly isolated strain ED-Mt61/PYG-s6 catalysed the dehydrogenation of ED to EL. The results indicate that the activation of SDG involves phylogenetically diverse bacteria, most of which are members of the dominant human intestinal microbiota.

    Topics: 4-Butyrolactone; Bacteria, Anaerobic; Butylene Glycols; Culture Media; Glucosides; Humans; Intestines; Lignans; Phylogeny

2006
Pharmacokinetics of enterolignans in healthy men and women consuming a single dose of secoisolariciresinol diglucoside.
    The Journal of nutrition, 2005, Volume: 135, Issue:4

    High concentrations of enterolignans in plasma are associated with a lower risk of acute coronary events. However, little is known about the absorption and excretion of enterolignans. The pharmacokinetic parameters and urinary excretion of enterodiol and enterolactone were evaluated after consumption of their purified plant precursor, secoisolariciresinol diglucoside (SDG). Twelve healthy volunteers ingested a single dose of purified SDG (1.31 micromol/kg body wt). Enterolignans appeared in plasma 8-10 h after ingestion of the purified SDG. Enterodiol reached its maximum plasma concentration 14.8 +/- 5.1 h (mean +/- SD) after ingestion of SDG, whereas enterolactone reached its maximum 19.7 +/- 6.2 h after ingestion. The mean elimination half-life of enterodiol (4.4 +/- 1.3 h) was shorter than that of enterolactone (12.6 +/- 5.6 h). The mean area under the curve of enterolactone (1762 +/- 1117 nmol/L . h) was twice as large as that of enterodiol (966 +/- 639 nmol/L . h). The mean residence time for enterodiol was 20.6 +/- 5.9 h and that for enterolactone was 35.8 +/- 10.6 h. Within 3 d, up to 40% of the ingested SDG was excreted as enterolignans via urine, with the majority (58%) as enterolactone. In conclusion, a substantial part of enterolignans becomes available in the blood circulation and is subsequently excreted. The measured mean residence times and elimination half-lives indicate that enterolignans accumulate in plasma when consumed 2-3 times a day and reach steady state. Therefore, plasma enterolignan concentrations are expected to be good biomarkers of dietary lignan exposure and can be used to evaluate the effects of lignans.

    Topics: 4-Butyrolactone; Adult; Blood Specimen Collection; Butylene Glycols; Dietary Supplements; Female; Glucosides; Humans; Lignans; Male; Reference Values

2005
Intestinal bacterial communities that produce active estrogen-like compounds enterodiol and enterolactone in humans.
    Applied and environmental microbiology, 2005, Volume: 71, Issue:10

    Lignans are dietary diphenolic compounds which require activation by intestinal bacteria to exert possible beneficial health effects. The intestinal ecosystem plays a crucial role in lignan metabolism, but the organisms involved are poorly described. To characterize the bacterial communities responsible for secoisolariciresinol (SECO) activation, i.e., the communities that produce the enterolignans enterodiol (ED) and enterolactone (EL), a study with 24 human subjects was undertaken. SECO activation was detected in all tested fecal samples. The intestinal bacteria involved in ED production were part of the dominant microbiota (6 x 10(8) CFU g(-1)), as revealed by most-probable-number enumerations. Conversely, organisms that catalyzed the formation of EL occurred at a mean concentration of approximately 3 x 10(5) CFU g(-1). Women tended to have higher concentrations of both ED- and EL-producing organisms than men. Significantly larger amounts of EL were produced by fecal dilutions from individuals with moderate to high concentrations of EL-producing bacteria. Two organisms able to demethylate and dehydroxylate SECO were isolated from human feces. Based on 16S rRNA gene sequence analyses, they were named Peptostreptococcus productus SECO-Mt75m3 and Eggerthella lenta SECO-Mt75m2. A new 16S rRNA-targeted oligonucleotide probe specific for P. productus and related species was designed and further used in fluorescent in situ hybridization experiments, along with five additional group-specific probes. Significantly higher proportions of P. productus and related species (P = 0.012), as well as bacteria belonging to the Atopobium group (P = 0.035), were typical of individuals with moderate to high concentrations of EL-producing communities.

    Topics: 4-Butyrolactone; Actinobacteria; Adult; Bacteria, Anaerobic; Butylene Glycols; Colony Count, Microbial; Culture Media; Female; Flow Cytometry; Glucosides; Humans; In Situ Hybridization, Fluorescence; Intestines; Lignans; Male; Middle Aged; Peptostreptococcus; Phytoestrogens

2005
Human intestinal bacteria capable of transforming secoisolariciresinol diglucoside to mammalian lignans, enterodiol and enterolactone.
    Chemical & pharmaceutical bulletin, 2000, Volume: 48, Issue:11

    Seven metabolites were isolated after anaerobic incubation of secoisolariciresinol diglucoside (1) with a human fecal suspension. They were identified as (-)-secoisolariciresinol (2), 3-demethyl-(-)-secoisolariciresinol (3), 2-(3-hydroxybenzyl)-3-(4-hydroxy-3-methoxybenzyl)butane-1,4-diol (4), didemethylsecoisolariciresinol (5), 2(3-hydroxybenzyl)-3-(3,4-dihydroxybenzyl)butane-1,4-diol (6), enterodiol (7) and enterolactone (8). Furthermore, two bacterial strains, Peptostreptococcus sp. SDG-1 and Eubacterium sp. SDG-2, responsible for the transformation of 1 to a mammalian lignan 7, were isolated from a human fecal suspension. The former transformed 2 to 3 and 5, as well as 4 to 6, and the latter transformed 5 to 6 and 7.

    Topics: 4-Butyrolactone; Animals; Butylene Glycols; Culture Media; Estrogens; Eubacterium; Feces; Glucosides; Humans; Intestines; Lignans; Magnetic Resonance Spectroscopy; Male; Mass Spectrometry; Peptostreptococcus; Rats; Rats, Wistar

2000
Antioxidant activity of the flaxseed lignan secoisolariciresinol diglycoside and its mammalian lignan metabolites enterodiol and enterolactone.
    Molecular and cellular biochemistry, 1999, Volume: 202, Issue:1-2

    The antioxidant activities of the flaxseed lignan secoisolariciresinol diglycoside (SDG) and its mammalian lignan metabolites, enterodiol (ED) and enterolactone (EL), were evaluated in both lipid and aqueous in vitro model systems. All three lignans significantly (p < or = 0.05) inhibited the linoleic acid peroxidation at both 10 and 100 microM over a 24-48 h of incubation at 40 degrees C. In a deoxyribose assay, which evaluates the non site-specific and site-specific Fenton reactant-induced *OH scavenging activity, SDG demonstrated the weakest activity compared to ED and EL at both 10 and 100 microM; the greatest *OH scavenging for ED and EL was observed at 100 microM in both assays. The incubation of pBR322 plasmid DNA with Fenton reagents together with SDG, ED or EL showed that the inhibition of DNA scissions was concentration dependent. The greatest non site-specific activity of lignans was at 100 microM, thus, confirming the results of the deoxyribose test. In contrast, the protective effect of SDG and EL in the site-specific assay was lost and that of ED was minimal. Therefore, the results indicate a structure-activity difference among the three lignans with respect to specific antioxidant efficacy. All three lignans did not exhibit reducing activity compared to ascorbic acid, therefore, did not possess indirect prooxidant activity related to potential changes in redox state of transition metals. The efficacy of SDG and particularly the mammalian lignans ED and EL to act as antioxidants in lipid and aqueous in vitro model systems, at relatively low concentrations (i.e. 100 microM), potentially achievable in vivo, is an evidence of a potential anticarcinogenic mechanism of flaxseed lignan SDG and its mammalian metabolites ED and EL.

    Topics: 4-Butyrolactone; Animals; Antioxidants; Butylene Glycols; Emulsions; Estrogens; Flax; Free Radical Scavengers; Glucosides; Hydroxides; Lignans; Linoleic Acid; Lipid Peroxidation; Mammals; Oxidation-Reduction; Seeds

1999