secoisolariciresinol-diglucoside has been researched along with 1-1-diphenyl-2-picrylhydrazyl* in 3 studies
3 other study(ies) available for secoisolariciresinol-diglucoside and 1-1-diphenyl-2-picrylhydrazyl
Article | Year |
---|---|
Determination of lignans, phenolic acids and antioxidant capacity in transformed hairy root culture of Linum usitatissimum.
Hairy root culture is a promising alternative method for the production of secondary metabolites. In this study, transformed root of Linum usitatissimum was established using Agrobacterium rhizogenes A4 strain from root cultures for lignans, phenolic acids and antioxidant capacity determination. Total lignin content (secoisolariciresinol diglucoside, secoisolariciresinol and matairesinol) was 55.5% higher in transformed root cultures than in the non-transformed root culture. Secoisolariciresinol was detected in higher concentration (2.107 μmol/g DM) in the transformed root culture than non-transformed culture (1.099 μmol/g DM). Secoisolariciresinol diglucoside and matairesinol were exclusively detected in the transformed root culture, but were not found in the non-transformed root culture. The overall production of phenolic acids in transformed roots was approximately 3.5 times higher than that of the corresponding non-transformed culture. Free radical scavenging DPPH˙ and ABTS˙ Topics: Antioxidants; Biphenyl Compounds; Butylene Glycols; Flax; Furans; Glucosides; Hydroxybenzoates; Lignans; Picrates; Plant Roots; Tissue Culture Techniques | 2018 |
Investigation of in vitro and in vivo antioxidant potential of secoisolariciresinol diglucoside.
The present study was designed to evaluate the in vitro and in vivo ameliorative antioxidant potential of secoisolariciresinol diglucoside (SDG). In vitro antioxidant activity of synthetic SDG was carried out using DPPH, reducing power potency, and DNA protection assays. Wistar albino rats weighing 180-220 g were used for in vivo studies and liver damage was induced in the experimental animals by a single intraperitoneal (I.P.) injection of CCl(4) (2 g/kg b.w.). Intoxicated animals were treated orally with synthetic SDG at (12.5 and 25 mg/kg b.w.) and Silymarin (25 mg/kg) for 14 consecutive days. The levels of catalase (CAT), superoxide dismutase (SOD), peroxidase (POX), and lipid peroxidase (LPO) were measured in liver and kidney homogenates. The synthetic SDG exerts high in vitro antioxidant potency as it could scavenge DPPH at a IC(50) value of 78.9 μg/ml and has dose-dependent reducing power potency and protected DNA at 0.5 mg/ml concentration. Oral administration of synthetic SDG at 12.5 and 25 mg/kg b.w. showed significant protection compared to Silymarin (25 mg/kg) and the activities of CAT, SOD, and POX were markedly increased (P < 0.05), whereas LPO significantly decreased (P < 0.001) in a dose-dependent manner in liver and kidney in both pre- and post-treatment groups when compared to toxin-treated group. The results of in vitro and in vivo investigations revealed that synthetic SDG at 25 mg/kg b.w. is associated with beneficial changes in hepatic enzyme activities and thereby plays a key role in the prevention of oxidative damage in immunologic system. Topics: Animals; Biphenyl Compounds; Butylene Glycols; Carbon Tetrachloride; Catalase; Chemical and Drug Induced Liver Injury; Free Radical Scavengers; Free Radicals; Glucosides; Kidney; Lipid Peroxidation; Liver; Malondialdehyde; Oxidation-Reduction; Peroxidase; Picrates; Rats; Rats, Wistar; Superoxide Dismutase | 2013 |
Antioxidant activities of the flaxseed lignan secoisolariciresinol diglucoside, its aglycone secoisolariciresinol and the mammalian lignans enterodiol and enterolactone in vitro.
The flaxseed lignan secoisolariciresinol diglucoside (SDG) and mammalian lignans enterodiol (ED) and enterolactone (EL) were previously shown to be effective antioxidants against DNA damage and lipid peroxidation. Others reported inhibition of activated cell chemiluminescence by supra-physiological concentrations of secoisolariciresinol (SECO), ED and EL. Thus, we evaluated the antioxidant efficacy of potential physiological concentrations of SDG, SECO, ED and EL against 1,1-diphenyl-2-picrylhydrazyl (DPPH()), and 2,2'-azo-bis(2-amidinopropane) dihydrochloride (AAPH)-initiated peroxyl radical plasmid DNA damage and phosphatidylcholine liposome lipid peroxidation. SDG and SECO were effective (p<0.01) antioxidants against DPPH() at 25-200muM; whereas, ED and EL were inactive. Efficacy of lignans and controls against AAPH peroxyl radical-induced DNA damage was: SDG>SECO=17alpha-estradiol>ED=EL>genistein>daidzein. Lignan efficacy against AAPH-induced liposome lipid peroxidation was: SDG>SECO=ED=EL. Plant lignan antioxidant activity was attributed to the 3-methoxy-4-hydroxyl substituents of SDG and SECO, versus the meta mono-phenol structures of ED and EL. Benzylic hydrogen abstraction and potential resonance stabilization of phenoxyl radicals in an aqueous environment likely contributed to the antioxidant activity of the mammalian lignans. These represent likely extra- and intracellular antioxidant activities of flax-derived lignans at concentrations potentially achievable in vivo. Topics: 4-Butyrolactone; Animals; Biphenyl Compounds; Butylene Glycols; Flax; Free Radical Scavengers; Glucosides; Hydrazines; Lignans; Liposomes; Mammals; Molecular Structure; Picrates; Seeds | 2007 |